A central limit theorem for Lp transportation cost on the real line with application to fairness assessment in machine learning

被引:16
作者
del Barrio, Eustasio [1 ]
Gordaliza, Paula [2 ]
Loubes, Jean-Michel [2 ]
机构
[1] Fac Ciencias, C Prado Magdalena S-N, Valladolid 47005, Spain
[2] Univ Toulouse 3, Inst Math Toulouse, F-31000 Toulouse, France
关键词
optimal transport; Monge-Kantorovich distance; central limit theorem; fair learning; WASSERSTEIN DISTANCE; GOODNESS; ASYMPTOTICS; TESTS;
D O I
10.1093/imaiai/iaz016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a central limit theorem for the Monge-Kantorovich distance between two empirical distributions with sizes n and m, W-p(P-n, Q(m)), p >= 1, for observations on the real line. In the case p > 1 our assumptions are sharp in terms of moments and smoothness. We prove results dealing with the choice of centring constants. We provide a consistent estimate of the asymptotic variance, which enables to build two sample tests and confidence intervals to certify the similarity between two distributions. These are then used to assess a new criterion of data set fairness in classification.
引用
收藏
页码:817 / 849
页数:33
相关论文
共 42 条
[1]   ON OPTIMAL MATCHINGS [J].
AJTAI, M ;
KOMLOS, J ;
TUSNADY, G .
COMBINATORICA, 1984, 4 (04) :259-264
[2]   Uniqueness and approximate computation of optimal incomplete transportation plans [J].
Alvarez-Esteban, P. C. ;
del Barrio, E. ;
Cuesta-Albertos, J. A. ;
Matran, C. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (02) :358-375
[3]  
[Anonymous], 2017, ARXIV170700973
[4]  
[Anonymous], 2017, ARXIV PREPRINT ARXIV
[5]   UNIFORMLY POWERFUL GOODNESS OF FIT TESTS [J].
BARRON, AR .
ANNALS OF STATISTICS, 1989, 17 (01) :107-124
[6]  
Bechavod Yahav, 2017, CoRR abs/1707.00044, P1733
[7]  
BERTHET P, 2017, ARXIV171009763
[8]  
Besse P., 2018, ARXIV180706362
[9]  
Bobkov S., 2014, PREPRINT
[10]  
Boucheron S., 2013, Concentration inequalities: A nonasymptotic theory of independence, DOI DOI 10.1093/ACPROF:OSO/9780199535255.001.0001