Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs

被引:22
作者
Bigolin, Francesco [1 ]
Cassano, Francesco Serra [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Trento, Italy
关键词
Heisenberg group; Carnot-Caratheodory metric; intrinsic graph; non-linear first-order PDEs; CARNOT-CARATHEODORY SPACES; IMPLICIT FUNCTION THEOREM; BERNSTEIN PROBLEM; RECTIFIABILITY; SUBMANIFOLDS; HYPERSURFACES; PERIMETER;
D O I
10.1515/ACV.2010.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue to study H-regular graphs, a class of intrinsic regular hypersurfaces in the Heisenberg group H-n = C-n x R R2n+1 endowed with a left-invariant metric d(infinity) equivalent to its Carnot-Caratheodory metric. Here we investigate their relationships with suitable weak solutions of non-linear first-order PDEs. As a consequence this implies some of their geometric properties: a uniqueness result for H-regular graphs of prescribed horizontal normal as well as their (Euclidean) regularity as long as there is regularity on the horizontal normal.
引用
收藏
页码:69 / 97
页数:29
相关论文
共 25 条
[11]  
CAPOGNA L, 2008, REGULARITY NONCHARAC
[12]   Implicit function theorem in Carnot-Caratheodory spaces [J].
Citti, G. ;
Manfredini, M. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2006, 8 (05) :657-680
[13]  
Danielli D, 2008, AM J MATH, V130, pCP2
[14]  
Danielli D, 2009, J DIFFER GEOM, V81, P251
[15]  
De Lellis C, 2008, ASTERISQUE, P175
[16]  
Franchi B, 2003, COMMUN ANAL GEOM, V11, P909
[17]  
Franchi B, 2001, MATH ANN, V321, P479
[18]  
Franchi B., 2003, J. Geom. Anal., V13, P421
[19]   Regular submanifolds, graphs and area formula in Heisenberg groups [J].
Franchi, Bruno ;
Serapioni, Raul ;
Cassano, Francesco Serra .
ADVANCES IN MATHEMATICS, 2007, 211 (01) :152-203
[20]  
Gromov M., 1996, Progr. Math., V144, P79