Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs

被引:19
作者
Bigolin, Francesco [1 ]
Cassano, Francesco Serra [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Trento, Italy
关键词
Heisenberg group; Carnot-Caratheodory metric; intrinsic graph; non-linear first-order PDEs; CARNOT-CARATHEODORY SPACES; IMPLICIT FUNCTION THEOREM; BERNSTEIN PROBLEM; RECTIFIABILITY; SUBMANIFOLDS; HYPERSURFACES; PERIMETER;
D O I
10.1515/ACV.2010.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue to study H-regular graphs, a class of intrinsic regular hypersurfaces in the Heisenberg group H-n = C-n x R R2n+1 endowed with a left-invariant metric d(infinity) equivalent to its Carnot-Caratheodory metric. Here we investigate their relationships with suitable weak solutions of non-linear first-order PDEs. As a consequence this implies some of their geometric properties: a uniqueness result for H-regular graphs of prescribed horizontal normal as well as their (Euclidean) regularity as long as there is regularity on the horizontal normal.
引用
收藏
页码:69 / 97
页数:29
相关论文
共 25 条
  • [11] CAPOGNA L, 2008, REGULARITY NONCHARAC
  • [12] Implicit function theorem in Carnot-Caratheodory spaces
    Citti, G.
    Manfredini, M.
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2006, 8 (05) : 657 - 680
  • [13] Danielli D, 2008, AM J MATH, V130, pCP2
  • [14] Danielli D, 2009, J DIFFER GEOM, V81, P251
  • [15] De Lellis C, 2008, ASTERISQUE, P175
  • [16] Franchi B, 2003, COMMUN ANAL GEOM, V11, P909
  • [17] Franchi B, 2001, MATH ANN, V321, P479
  • [18] Franchi B., 2003, J. Geom. Anal., V13, P421
  • [19] Regular submanifolds, graphs and area formula in Heisenberg groups
    Franchi, Bruno
    Serapioni, Raul
    Cassano, Francesco Serra
    [J]. ADVANCES IN MATHEMATICS, 2007, 211 (01) : 152 - 203
  • [20] Gromov M., 1996, Progr. Math., V144, P79