Entangled end states with fractionalized spin projection in a time-reversal-invariant topological superconducting wire

被引:18
作者
Aligia, Armando A. [1 ,2 ]
Arrachea, Liliana [3 ]
机构
[1] CNEA, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Argentina
[2] CNEA, Inst Balseiro, RA-8400 San Carlos De Bariloche, Argentina
[3] ECyT UNSAM, Int Ctr Adv Studies, Campus Miguelete,25 Mayo & Francia, RA-1650 Buenos Aires, DF, Argentina
关键词
MAJORANA FERMIONS;
D O I
10.1103/PhysRevB.98.174507
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the ground state and low-energy subgap excitations of a finite wire of a time-reversal-invariant topological superconductor (TRITOPS) with spin-orbit coupling. We solve the problem analytically for a long chain of a specific one-dimensional lattice model in the electron-hole symmetric configuration and numerically for other cases of the same model. We present results for the spin density of excitations in long chains with an odd number of particles. The total spin projection along the axis of the spin-orbit coupling S-z = +/- 1/2 is distributed with fractions +/- 1/4 localized at both ends and shows even-odd alternation along the sites of the chain. We calculate the localization length of these excitations and find that it can be well approximated by a simple analytical expression. We show that the energy E of the lowest subgap excitations of the finite chain defines tunneling and entanglement between end states. We discuss the effect of a Zeeman coupling Delta(z) on one of the ends of the chain only. For Delta(z) < E, the energy difference of excitations with opposite spin orientation is Delta(z) /2, consistent with a spin projection +/- 1/4. We argue that these physical features are not model dependent and can be experimentally observed in TRITOPS wires under appropriate conditions.
引用
收藏
页数:13
相关论文
共 46 条
[1]   Generalization of Bloch's theorem for arbitrary boundary conditions: Theory [J].
Alase, Abhijeet ;
Cobanera, Emilio ;
Ortiz, Gerardo ;
Viola, Lorenza .
PHYSICAL REVIEW B, 2017, 96 (19)
[2]   Exact Solution of Quadratic Fermionic Hamiltonians for Arbitrary Boundary Conditions [J].
Alase, Abhijeet ;
Cobanera, Emilio ;
Ortiz, Gerardo ;
Viola, Lorenza .
PHYSICAL REVIEW LETTERS, 2016, 117 (07)
[3]   Exponential protection of zero modes in Majorana islands [J].
Albrecht, S. M. ;
Higginbotham, A. P. ;
Madsen, M. ;
Kuemmeth, F. ;
Jespersen, T. S. ;
Nygard, J. ;
Krogstrup, P. ;
Marcus, C. M. .
NATURE, 2016, 531 (7593) :206-+
[4]   Specific heat of defects in the Haldane system Y2BaNiO5 [J].
Batista, CD ;
Hallberg, K ;
Aligia, AA .
PHYSICAL REVIEW B, 1998, 58 (14) :9248-9251
[5]  
Beenakker C. W. J., 2006, P INT SCH PHYS E, V162, P307
[6]   Fractional Spin and Josephson Effect in Time-Reversal-Invariant Topological Superconductors [J].
Camjayi, Alberto ;
Arrachea, Liliana ;
Aligia, Armando ;
von Oppen, Felix .
PHYSICAL REVIEW LETTERS, 2017, 119 (04)
[7]   Symmetry protected topological orders and the group cohomology of their symmetry group [J].
Chen, Xie ;
Gu, Zheng-Cheng ;
Liu, Zheng-Xin ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2013, 87 (15)
[8]   Fermionized parafermions and symmetry-enriched Majorana modes [J].
Chew, Aaron ;
Mross, David F. ;
Alicea, Jason .
PHYSICAL REVIEW B, 2018, 98 (08)
[9]   Time-reversal anomaly and Josephson effect in time-reversal-invariant topological superconductors [J].
Chung, Suk Bum ;
Horowitz, Joshua ;
Qi, Xiao-Liang .
PHYSICAL REVIEW B, 2013, 88 (21)
[10]  
Das A, 2012, NAT PHYS, V8, P887, DOI [10.1038/nphys2479, 10.1038/NPHYS2479]