Design, Optimization and Energetic Evaluation of an Efficient Fully Powered Ankle-Foot Prosthesis With a Series Elastic Actuator

被引:16
|
作者
Dong, Dianbiao [1 ,2 ]
Ge, Wenjie [1 ]
Convens, Bryan [2 ]
Sun, Yuanxi [3 ]
Verstraten, Tom [2 ]
Vanderborght, Bram [2 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Peoples R China
[2] Vrije Univ Brussel, Dept Mech Engn, B-1050 Brussels, Belgium
[3] Chongqing Univ, Coll Mech Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Actuator; efficiency; peak power; prosthesis; series elastic actuator; GEARED DC MOTORS; WALKING; GAIT;
D O I
10.1109/ACCESS.2020.2983518
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use of powered ankle-foot prostheses for below-knee amputees leads to challenges like the peak power of the applied actuator and biomechanical features of the prosthesis foot. This paper proposes an efficient powered ankle-foot prosthesis with a series elastic actuator. By combining the geared five-bar spring (GFBS) mechanism and the traditional series elastic actuator (SEA), a series elastic with geared five-bar (SGFB) actuator is built. The new SGFB actuator has the benefits of both the GFBS and the SEA on mimicking biomechanics of the human ankle and reducing the peak power of the motor. The healthy walking gait in the experiment results indicates that the optimized SGFB prosthesis foot including a 150W Maxon DC motor can provide a 70kg subject enough net positive energy with an energy efficiency of 35.3% during normal speed walking in the treadmill trials. The experiment of the SGFB prosthesis foot in semi-active mode shows the advantage on closely mimicking the human biomechanics during the control dorsiflexion phase and the importance of injecting positive energy during the powered plantarflexion phase. The experiment results also show that the optimization of different parameters within the electromechanical model considering the efficiency of the whole drive train can effectively reduce the motor's peak power to 132 W by making the motor more effective in high-power conditions.
引用
收藏
页码:61491 / 61503
页数:13
相关论文
共 50 条
  • [1] Design of Powered Ankle-Foot Prosthesis Driven by Parallel Elastic Actuator
    Gao, Fei
    Liao, Wei-Hsin
    Ma, Hao
    Qin, Lai-Yin
    Chen, Bing
    PROCEEDINGS OF THE IEEE/RAS-EMBS INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR 2015), 2015, : 374 - 379
  • [2] Design of Powered Ankle-Foot Prosthesis With Nonlinear Parallel Spring Mechanism
    Gao, Fei
    Liu, Yannan
    Liao, Wei-Hsin
    JOURNAL OF MECHANICAL DESIGN, 2018, 140 (05)
  • [3] Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: A case series
    Hill, David
    Herr, Hugh
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2013,
  • [4] Design of a powered ankle-foot prosthesis with an adjustable stiffness toe joint
    She, Haotian
    Zhu, Jinying
    Tian, Ye
    Wang, Yanchao
    Huang, Qiang
    ADVANCED ROBOTICS, 2020, 34 (10) : 689 - 697
  • [5] Design, Control, and Evaluation of a Robotic Ankle-Foot Prosthesis Emulator
    Anderson, Anthony J.
    Hudak, Yuri F.
    Muir, Brittney C.
    Aubin, Patrick M.
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2023, 5 (03): : 741 - 752
  • [6] Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism
    Dong, Dianbiao
    Ge, Wenjie
    Liu, Shumin
    Xia, Fan
    Sun, Yuanxi
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2017, 14 (03):
  • [7] Biologically Inspired Design and Development of a Variable Stiffness Powered Ankle-Foot Prosthesis
    Agboola-Dobson, Alexander
    Wei, Guowu
    Ren, Lei
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2019, 11 (04):
  • [8] Design and development of ankle-foot prosthesis with delayed release of plantarflexion
    Mitchell, Michael
    Craig, Katelynn
    Kyberd, Peter
    Biden, Edmund
    Bush, Greg
    JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT, 2013, 50 (03) : 409 - 422
  • [9] Shortcomings of human-in-the-loop optimization of an ankle-foot prosthesis emulator: a case series
    Welker, Cara Gonzalez
    Voloshina, Alexandra S.
    Chiu, Vincent L.
    Collins, Steven H.
    ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (05):
  • [10] A Compact, Lightweight Robotic Ankle-Foot Prosthesis: Featuring a Powered Polycentric Design
    Gabert, Lukas
    Hood, Sarah
    Minh Tran
    Cempini, Marco
    Lenzi, Tommaso
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 2020, 27 (01) : 87 - 102