Oxygen-Deficient Blue TiO2 for Ultrastable and Fast Lithium Storage

被引:109
作者
Hao, Zhongkai [1 ,2 ]
Chen, Qi [3 ]
Dai, Wenrui [1 ,2 ]
Ren, Yinjuan [1 ]
Zhou, Yin [1 ,2 ]
Yang, Jinlin [1 ,2 ]
Xie, Sijie [4 ]
Shen, Yanbin [4 ]
Wu, Jihong [3 ]
Chen, Wei [1 ,2 ]
Xu, Guo Qin [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[2] Natl Univ Singapore Suzhou, Res Inst, Suzhou 215123, Peoples R China
[3] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China
[4] Chinese Acad Sci, CAS Ctr Excellence Nanosci, Suzhou Inst Nanotech & Nanobion, I Lab, Suzhou 215123, Peoples R China
关键词
electrochemical energy storage; Li-ion batteries; oxygen vacancies; titanium dioxide; ELECTROCHEMICAL ENERGY-STORAGE; ANATASE TIO2; ION BATTERY; ANODE MATERIALS; HOLLOW SPHERES; PERFORMANCE; CHALLENGES; SIZE; INTERCALATION; NANOMATERIALS;
D O I
10.1002/aenm.201903107
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing a titanium dioxide (TiO2)-based anode with superior high-rate capability and long-term cycling stability is important for efficient energy storage. Herein, a simple one-step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g(-1) at 100 C (16 800 mA g(-1)) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion-controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen-deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage.
引用
收藏
页数:8
相关论文
共 67 条
[1]   A high-power and fast charging Li-ion battery with outstanding cycle-life [J].
Agostini, M. ;
Brutti, S. ;
Navarra, M. A. ;
Panero, S. ;
Reale, P. ;
Matic, A. ;
Scrosati, B. .
SCIENTIFIC REPORTS, 2017, 7
[2]   Free-Standing 3D-Sponged Nanofiber Electrodes for Ultrahigh-Rate Energy-Storage Devices [J].
Agostini, Marco ;
Lim, Du Hyun ;
Brutti, Sergio ;
Lindahl, Nildas ;
Ahn, Jou Hyeon ;
Scrosati, Bruno ;
Matic, Aleksandar .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (40) :34140-34146
[3]   Supramolecular Polymerization Promoted In Situ Fabrication of Nitrogen-Doped Porous Graphene Sheets as Anode Materials for Li-Ion Batteries [J].
Ai, Wei ;
Jiang, Jian ;
Zhu, Jianhui ;
Fan, Zhanxi ;
Wang, Yanlong ;
Zhang, Hua ;
Huang, Wei ;
Yu, Ting .
ADVANCED ENERGY MATERIALS, 2015, 5 (15)
[4]   Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries [J].
Assat, Gaurav ;
Tarascon, Jean-Marie .
NATURE ENERGY, 2018, 3 (05) :373-386
[5]   Recent Progress in Understanding Ion Storage in Self-Organized Anodic TiO2 Nanotubes [J].
Auer, Andrea ;
Kunze-Liebhaeuser, Julia .
SMALL METHODS, 2019, 3 (08)
[6]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[7]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[8]   TiO2-(B) Nanotubes as Anodes for Lithium Batteries: Origin and Mitigation of Irreversible Capacity [J].
Brutti, Sergio ;
Gentili, Valentina ;
Menard, Herve ;
Scrosati, Bruno ;
Bruce, Peter G. .
ADVANCED ENERGY MATERIALS, 2012, 2 (03) :322-327
[9]   Walnut-like Porous Core/Shell TiO2 with Hybridized Phases Enabling Fast and Stable Lithium Storage [J].
Cai, Yi ;
Wang, Hong-En ;
Zhao, Xu ;
Huang, Fei ;
Wang, Chao ;
Deng, Zhao ;
Li, Yu ;
Cao, Guozhong ;
Su, Bao-Lian .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (12) :10652-10663
[10]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289