Equivariant spectral triples on the quantum SU(2) group

被引:63
作者
Chakraborty, PS
Pal, A
机构
[1] Indian Stat Inst, Kolkata 700108, India
[2] Indian Stat Inst, Delhi Ctr, New Delhi 110016, India
关键词
spectral triples; quantum group;
D O I
10.1023/A:1024571719032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize all equivariant odd spectral triples for the quantum SU(2) group acting on its L-2-space and having a nontrivial Chern character. It is shown that the dimension of an equivariant spectral triple is at least three, and given any element of the K-homology group of SUq(2), there is an equivariant odd spectral triple of dimension 3 inducing that element. The method employed to get equivariant spectral triples in the quantum case is then used for classical SU( 2), and we prove that for p < 4, there does not exist any equivariant spectral triple with nontrivial K-homology class and dimension p acting on the L-2-space.
引用
收藏
页码:107 / 126
页数:20
相关论文
共 11 条
[1]  
[Anonymous], MSRI PUBL
[2]  
BIBIKOV PN, 2000, J MATH SCI NY, V100, P2039
[3]   Noncommutative manifolds, the instanton algebra and isospectral deformations [J].
Connes, A ;
Landi, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (01) :141-159
[4]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[5]  
GOSWAMI D, MATHPH0108003
[6]  
KLIMYK A, 1998, QUANTUM GROUPS THEIR
[7]  
MASUDA T, 1991, CURRENT TOPICS IN OPERATOR ALGEBRAS, P359
[8]   QUANTUM DEFORMATION OF LORENTZ GROUP [J].
PODLES, P ;
WORONOWICZ, SL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (02) :381-431
[9]   THE KUNNETH THEOREM AND THE UNIVERSAL COEFFICIENT THEOREM FOR KASPAROV GENERALIZED K-FUNCTOR [J].
ROSENBERG, J ;
SCHOCHET, C .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (02) :431-474
[10]  
VAKSMAN LL, 1988, FUNCT ANAL APPL+, V22, P170