The existence and nonexistence of global solutions for a semilinear heat equation on graphs

被引:65
作者
Lin, Yong [1 ]
Wu, Yiting [1 ]
机构
[1] Renmin Univ China, Dept Math, Beijing 100872, Peoples R China
关键词
EXTINCTION; DIRICHLET;
D O I
10.1007/s00526-017-1204-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a finite or locally finite connected weighted graph, Delta be the usual graph Laplacian. Using heat kernel estimates, we prove the existence and nonexistence of global solutions for the following semilinear heat equation on G {ut = Delta u + u(1+alpha) in (0,+infinity) x V, u(0, x) = a(x) in V. We conclude that, for a graph satisfying curvature dimension condition CDE'(n, 0) and V(x, r) similar or equal to r(m), if 0 < m alpha < 2, then the non-negative solution u is not global, and if m alpha > 2, then there is a non-negative global solution u provided that the initial value is small enough. In particular, these results apply to the lattice Z(m).
引用
收藏
页数:22
相关论文
共 16 条
[1]  
Bauer F, 2015, J DIFFER GEOM, V99, P359
[2]   Extinction and positivity of the solutions of the heat equations with absorption on networks [J].
Chung, Yun-Sung ;
Lee, Young-Su ;
Chung, Soon-Yeong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) :642-652
[3]   DETERMINING THE RESISTORS IN A NETWORK [J].
CURTIS, EB ;
MORROW, JA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (03) :918-930
[4]   Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing [J].
Elmoataz, Abderrahim ;
Lezoray, Olivier ;
Bougleux, Sebastien .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (07) :1047-1060
[5]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[6]   Existence of positive solutions to some nonlinear equations on locally finite graphs [J].
Grigor'yan, Alexander ;
Lin Yong ;
Yang YunYan .
SCIENCE CHINA-MATHEMATICS, 2017, 60 (07) :1311-1324
[7]   Yamabe type equations on graphs [J].
Grigor'yan, Alexander ;
Lin, Yong ;
Yang, Yunyan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) :4924-4943
[8]   Kazdan-Warner equation on graph [J].
Grigor'yan, Alexander ;
Lin, Yong ;
Yang, Yunyan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
[9]   Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions [J].
Haeseler, Sebastian ;
Keller, Matthias ;
Lenz, Daniel ;
Wojciechowski, Radoslaw .
JOURNAL OF SPECTRAL THEORY, 2012, 2 (04) :397-432
[10]   NONEXISTENCE OF GLOBAL SOLUTIONS OF SOME SEMILINEAR PARABOLIC DIFFERENTIAL EQUATIONS [J].
HAYAKAWA, K .
PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (07) :503-505