Transcriptional reprogramming in cellular quiescence

被引:48
作者
Roche, Benjamin [1 ]
Arcangioli, Benoit [2 ]
Martienssen, Robert [1 ,3 ]
机构
[1] Cold Spring Harbor Lab, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 USA
[2] CNRS, UMR 3525, Genome Dynam Unit, Inst Pasteur, 25-28 Rue Docteur Roux, Paris, France
[3] Gordon & Betty Moore Fdn HHMI GBM, Howard Hughes Med Inst, Cold Spring Harbor, NY USA
关键词
Dicer; differentiation; dormancy; epigenetics; G0; histone; quiescence; reprogramming; RNA interference; stem cells; transcription; NEURAL STEM-CELLS; RESTRICTION POINT; STATIONARY-PHASE; FISSION YEAST; CANCER-CELLS; G(0) STATE; CYCLE; PROTEIN; G0; SURVIVAL;
D O I
10.1080/15476286.2017.1327510
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most cells in nature are not actively dividing, yet are able to return to the cell cycle given the appropriate environmental signals. There is now ample evidence that quiescent G0 cells are not shut-down but still metabolically and transcriptionally active. Quiescent cells must maintain a basal transcriptional capacity to maintain transcripts and proteins necessary for survival. This implies a tight control over RNA polymerases: RNA pol II for mRNA transcription during G0, but especially RNA pol I and RNA pol III to maintain an appropriate level of structural RNAs, raising the possibility that specific transcriptional control mechanisms evolved in quiescent cells. In accordance with this, we recently discovered that RNA interference is necessary to control RNA polymerase I transcription during G0. While this mini-review focuses on yeast model organisms (Saccharomyces cerevisiae and Schizosaccharomyces pombe), parallels are drawn to other eukaryotes and mammalian systems, in particular stem cells.
引用
收藏
页码:843 / 853
页数:11
相关论文
共 65 条
[1]   Models, mechanisms and clinical evidence for cancer dormancy [J].
Aguirre-Ghiso, Julio A. .
NATURE REVIEWS CANCER, 2007, 7 (11) :834-846
[2]   Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures [J].
Allen, Chris ;
Buettner, Sabrina ;
Aragon, Anthony D. ;
Thomas, Jason A. ;
Meirelles, Osorio ;
Jaetao, Jason E. ;
Benn, Don ;
Ruby, Stephanie W. ;
Veenhuis, Marten ;
Madeo, Frank ;
Werner-Washburne, Margaret .
JOURNAL OF CELL BIOLOGY, 2006, 174 (01) :89-100
[3]   EXPRESSION OF THE NUCLEAR-MEMBRANE PROTEIN STATIN IN CYCLING CELLS [J].
ANSARI, B ;
DOVER, R ;
GILLMORE, CP ;
HALL, PA .
JOURNAL OF PATHOLOGY, 1993, 169 (04) :391-396
[4]   Single-cell mass cytometry adapted to measurements of the cell cycle [J].
Behbehani, Gregory K. ;
Bendall, Sean C. ;
Clutter, Matthew R. ;
Fantl, Wendy J. ;
Nolan, Garry P. .
CYTOMETRY PART A, 2012, 81A (07) :552-566
[5]  
Bresnahan WA, 1996, CELL GROWTH DIFFER, V7, P1283
[6]   Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells [J].
Bullwinkel, J ;
Baron-Lühr, B ;
Lüdemann, A ;
Wohlenberg, C ;
Gerdes, J ;
Scholzen, T .
JOURNAL OF CELLULAR PHYSIOLOGY, 2006, 206 (03) :624-635
[7]   Neural Stem Cells and Nutrients: Poised Between Quiescence and Exhaustion [J].
Cavallucci, Virve ;
Fidaleo, Marco ;
Pani, Giovambattista .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2016, 27 (11) :756-769
[8]   Modeling Selective Elimination of Quiescent Cancer Cells from Bone Marrow [J].
Cavnar, Stephen P. ;
Rickelmann, Andrew D. ;
Meguiar, Kaille F. ;
Xiao, Annie ;
Dosch, Joseph ;
Leung, Brendan M. ;
Lesher-Perez, Sasha Cai ;
Chitta, Shashank ;
Luker, Kathryn E. ;
Takayama, Shuichi ;
Luker, Gary D. .
NEOPLASIA, 2015, 17 (08) :625-633
[9]   The aged niche disrupts muscle stem cell quiescence [J].
Chakkalakal, Joe V. ;
Jones, Kieran M. ;
Basson, M. Albert ;
Brack, Andrew S. .
NATURE, 2012, 490 (7420) :355-+
[10]   Origin of Irreversibility of Cell Cycle Start in Budding Yeast [J].
Charvin, Gilles ;
Oikonomou, Catherine ;
Siggia, Eric D. ;
Cross, Frederick R. .
PLOS BIOLOGY, 2010, 8 (01)