The extended mapping class group can be generated by two torsions

被引:3
作者
Du, Xiaoming [1 ]
机构
[1] South China Univ Technol, Sch Math, 381 Wushan Rd, Guangzhou 510630, Guangdong, Peoples R China
关键词
Mapping class group; generator; torsion; PANTS COMPLEX; FINITE-SET; ELEMENTS; SURFACE;
D O I
10.1142/S0218216517500614
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S-g be the closed-oriented surface of genus g and let Mod(+/-)(S-g) be the extended mapping class group of S-g. When the genus is at least 5, we prove that Mod(+/-)(S-g) can be generated by two torsion elements. One of these generators is of order 2, and the other one is of order 4g + 2.
引用
收藏
页数:9
相关论文
共 17 条
[1]   Every mapping class group is generated by 6 involutions [J].
Brendle, TE ;
Farb, B .
JOURNAL OF ALGEBRA, 2004, 278 (01) :187-198
[2]   Weil-Petersson isometries via the pants complex [J].
Brock, Jeffrey ;
Margalit, Dan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (03) :795-803
[3]   The formation class group (The arithmetic area field) [J].
Dehn, M .
ACTA MATHEMATICA, 1938, 69 (01) :135-206
[4]  
Farb B., 2012, PRINCETON MATH SERIE, V49, P623
[5]  
Humphries Stephen P., 1979, LECT NOTES MATH, V722
[6]  
Ivanov NV, 1997, INT MATH RES NOTICES, V1997, P651
[7]   THE STRUCTURE OF THE TORELLI GROUP .1. A FINITE-SET OF GENERATORS FOR I [J].
JOHNSON, D .
ANNALS OF MATHEMATICS, 1983, 118 (03) :423-442
[8]  
Kassabov M., 2003, ARXIVMATHGT0311455
[9]   Generating the surface mapping class group by two elements [J].
Korkmaz, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (08) :3299-3310
[10]  
Korkmaz M, 2012, IRMA LECT MATH THEOR, V17, P441