Lax pair and lump solutions for the (2+1)-dimensional DJKM equation associated with bilinear Backlund transformations

被引:43
作者
Cheng, Li [1 ]
Zhang, Yi [2 ]
Lin, Mei-Juan [1 ]
机构
[1] Jinhua Polytech, Normal Sch, Jinhua 321007, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词
DJKM equation; Backlund transformation; Lax pair; Complexiton; Lump solution; 35Q51; 35Q53; 37K40; COMPLEXITON SOLUTIONS; RATIONAL SOLUTIONS; KINK SOLUTIONS; N-SOLITON; LATTICE; FORM;
D O I
10.1007/s13324-018-0271-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We aim to explore exact solutions and integrable properties to the (2+1)-dimensional DJKM equation. Based on the bilinear Backlund transformation, we first furnish Lax pair and complex exponential wave function solutions, and then give complexitons or hyperbolic function solutions. Moreover, via the nonlinear superposition formula, the construction procedure for presenting rational solutions is improved. The key step is that all the involved parameters are extended to the complex field. In particular, we show that the (2+1)-dimensional DJKM equation possesses a general class of lump solutions when sigma 2=-1.
引用
收藏
页码:1741 / 1752
页数:12
相关论文
共 38 条
[1]   Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation [J].
Chen, Shou-Ting ;
Ma, Wen-Xiu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (07) :1680-1685
[2]   Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation [J].
Chen, Shou-Ting ;
Ma, Wen-Xiu .
FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (03) :525-534
[3]   Rational and complexiton solutions of the (3+1)-dimensional KP equation [J].
Cheng, Li ;
Zhang, Yi ;
Tong, Zi-Shuang ;
Ge, Jian-Ya .
NONLINEAR DYNAMICS, 2013, 72 (03) :605-613
[4]   ARE ALL THE EQUATIONS OF THE KADOMTSEV-PETVIASHVILI HIERARCHY INTEGRABLE [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) :2848-2852
[5]  
Hirota R., 2004, The Direct Method in Soliton Theory
[6]  
Hu X. B., 1989, J. Grad. Sch. USTC, V6, P8
[7]   Some new exact solutions of the Novikov-Veselov equation [J].
Hu, XB ;
Willox, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (15) :4589-4592
[8]   Application of Hirota's bilinear formalism to a two-dimensional lattice by Leznov [J].
Hu, XB ;
Tam, HW .
PHYSICS LETTERS A, 2000, 276 (1-4) :65-72
[9]   Rational solutions of integrable equations via nonlinear superposition formulae [J].
Hu, XB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23) :8225-8240
[10]  
Hu XB, 2001, J NONLINEAR MATH PHY, V8, P149