Federated Learning based Energy Demand Prediction with Clustered Aggregation

被引:40
|
作者
Tun, Ye Lin [1 ]
Thar, Kyi [1 ]
Thwal, Chu Myaet [1 ]
Hong, Choong Seon [1 ]
机构
[1] Kyung Hee Univ, Dept Comp Sci & Engn, Yongin 17104, South Korea
基金
新加坡国家研究基金会;
关键词
energy; federated learning; recurrent neural network; clustering; long short-term memory; CONSUMPTION;
D O I
10.1109/BigComp51126.2021.00039
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To reduce negative environmental impacts, power stations and energy grids need to optimize the resources required for power production. Thus, predicting the energy consumption of clients is becoming an important part of every energy management system. Energy usage information collected by the clients' smart homes can be used to train a deep neural network to predict the future energy demand. Collecting data from a large number of distributed clients for centralized model training is expensive in terms of communication resources. To take advantage of distributed data in edge systems, centralized training can be replaced by federated learning where each client only needs to upload model updates produced by training on its local data. These model updates are aggregated into a single global model by the server. But since different clients can have different attributes, model updates can have diverse weights and as a result, it can take a long time for the aggregated global model to converge. To speed up the convergence process, we can apply clustering to group clients based on their properties and aggregate model updates from the same cluster together to produce a cluster specific global model. In this paper, we propose a recurrent neural network based energy demand predictor, trained with federated learning on clustered clients to take advantage of distributed data and speed up the convergence process.
引用
收藏
页码:164 / 167
页数:4
相关论文
共 50 条
  • [31] Cluster-Based Secure Aggregation for Federated Learning
    Kim, Jien
    Park, Gunryeong
    Kim, Miseung
    Park, Soyoung
    ELECTRONICS, 2023, 12 (04)
  • [32] Contract Theory Based Incentive Mechanism for Clustered Vehicular Federated Learning
    Wang, Siyang
    Zhao, Haitao
    Wen, Wanli
    Xia, Wenchao
    Wang, Bin
    Zhu, Hongbo
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 8134 - 8147
  • [33] EntroCFL: Entropy-Based Clustered Federated Learning With Incentive Mechanism
    Tu, Kaifei
    Wang, Xuehe
    Hu, Xiping
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (01): : 986 - 1001
  • [34] SoFL: Clustered Federated Learning Based on Dual Clustering for Heterogeneous Data
    Zhang, Jianfei
    Qiao, Zhiming
    ELECTRONICS, 2024, 13 (18)
  • [35] Federated AutoML learning for community building energy prediction
    Wang, Rui
    Bai, Ling
    Rayhana, Rakiba
    Liu, Zheng
    NDE 4.0, PREDICTIVE MAINTENANCE, COMMUNICATION, AND ENERGY SYSTEMS: THE DIGITAL TRANSFORMATION OF NDE II, 2024, 12952
  • [36] Over-the-Air Clustered Federated Learning
    Sami, Hasin Us
    Guler, Basak
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7877 - 7893
  • [37] Active Client Selection for Clustered Federated Learning
    Huang, Honglan
    Shi, Wei
    Feng, Yanghe
    Niu, Chaoyue
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16424 - 16438
  • [38] Active Client Selection for Clustered Federated Learning
    Huang, Honglan
    Shi, Wei
    Feng, Yanghe
    Niu, Chaoyue
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16424 - 16438
  • [39] A Greedy Agglomerative Framework for Clustered Federated Learning
    Mehta, Manan
    Shao, Chenhui
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (12) : 11856 - 11867
  • [40] Clustered Vehicular Federated Learning: Process and Optimization
    Taik, Afaf
    Mlika, Zoubeir
    Cherkaoui, Soumaya
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 25371 - 25383