CPRQ: Cost Prediction for Range Queries in Moving Object Databases

被引:3
|
作者
Guo, Shengnan [1 ]
Xu, Jianqiu [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
cost prediction; range query; moving object database; machine learning; MODELS; OPTIMIZER;
D O I
10.3390/ijgi10070468
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Predicting query cost plays an important role in moving object databases. Accurate predictions help database administrators effectively schedule workloads and achieve optimal resource allocation strategies. There are some works focusing on query cost prediction, but most of them employ analytical methods to obtain an index-based cost prediction model. The accuracy can be seriously challenged as the workload of the database management system becomes more and more complex. Differing from the previous work, this paper proposes a method called CPRQ (Cost Prediction of Range Query) which is based on machine-learning techniques. The proposed method contains four learning models: the polynomial regression model, the decision tree regression model, the random forest regression model, and the KNN (k-Nearest Neighbor) regression model. Using R-squared and MSE (Mean Squared Error) as measurements, we perform an extensive experimental evaluation. The results demonstrate that CPRQ achieves high accuracy and the random forest regression model obtains the best predictive performance (R-squared is 0.9695 and MSE is 0.154).
引用
收藏
页数:13
相关论文
共 11 条
  • [1] Managing continuous range queries in mobile databases
    Cai, Y
    Hua, KA
    2002 4TH INTERNATIONAL WORKSHOP ON MOBILE AND WIRELESS COMMUNICATION NETWORK, 2002, : 441 - 445
  • [2] BerlinMOD: a benchmark for moving object databases
    Duntgen, Christian
    Behr, Thomas
    Gueting, Ralf Hartmut
    VLDB JOURNAL, 2009, 18 (06) : 1335 - 1368
  • [3] BerlinMOD: a benchmark for moving object databases
    Christian Düntgen
    Thomas Behr
    Ralf Hartmut Güting
    The VLDB Journal, 2009, 18 : 1335 - 1368
  • [4] Efficient Trajectory Indexing in Moving Object Databases
    Won, Jung-Im
    Cha, Chang-Il
    Jang, Min-Hee
    Kim, Sang-Wook
    Lee, Junghoon
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2011, 14 (08): : 2743 - 2758
  • [5] Optimized algorithms for predictive range and KNN queries on moving objects
    Zhang, Rui
    Jagadish, H. V.
    Dai, Bing Tian
    Ramamohanarao, Kotagiri
    INFORMATION SYSTEMS, 2010, 35 (08) : 911 - 932
  • [6] Development operators on 4D moving object databases
    JUN Sung woo
    LEE Yang koo
    KIM Sang ho
    CHI Jeong hee
    RYU Keun ho
    重庆邮电学院学报(自然科学版), 2004, (05) : 108 - 112
  • [7] Real-time processing of range-monitoring queries in heterogeneous mobile databases
    Cai, Ying
    Hua, Kien A.
    Cao, Guohong
    Xu, Toby
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2006, 5 (07) : 931 - 942
  • [8] Realtime Tracking and Grasping of a Moving Object from Range Video
    Husain, Farzad
    Colome, Adria
    Dellen, Babette
    Alenya, Guillem
    Torras, Carme
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 2617 - 2622
  • [9] HarmonyMoves: A Unified Prediction Approach for Moving Object Future Path
    Abdalla, Mohammed
    Mokhtar, Hoda M. O.
    ElGamal, Neveen
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (01) : 637 - 644
  • [10] Cost-efficiency disk failure prediction via threshold-moving
    Jiang, Tianming
    Huang, Ping
    Zhou, Ke
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (14)