Advances in Glioblastoma Multiforme Treatment: New Models for Nanoparticle Therapy

被引:121
作者
Ozdemir-Kaynak, Elif [1 ]
Qutub, Amina A. [2 ]
Yesil-Celiktas, Ozlem [1 ,3 ,4 ]
机构
[1] Ege Univ, Fac Engn, Dept Bioengn, Bomova, Turkey
[2] Rice Univ, Dept Bioengn, Houston, TX USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Biomat Innovat Res Ctr, Dept Med,Div Biomed Engn, Boston, MA USA
[4] Harvard Mit Div Hlth Sci & Technol, Cambridge, MA USA
关键词
glioblastoma; delphinidin; nanoparticle; cytoscape; blood-brain barrier modeling; BLOOD-BRAIN-BARRIER; TARGETED DRUG-DELIVERY; PHASE-II TRIAL; MATHEMATICAL-MODEL; MALIGNANT GLIOMAS; BIOLOGICAL-PROPERTIES; GOLD NANOPARTICLES; RADIATION-THERAPY; GENE DELIVERY; GROWTH;
D O I
10.3389/fphys.2018.00170
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The most lethal form of brain cancer, glioblastoma multiforme, is characterized by rapid growth and invasion facilitated by cell migration and degradation of the extracellular matrix. Despite technological advances in surgery and radio-chemotherapy, glioblastoma remains largely resistant to treatment. New approaches to study glioblastoma and to design optimized therapies are greatly needed. One such approach harnesses computational modeling to support the design and delivery of glioblastoma treatment. In this paper, we critically summarize current glioblastoma therapy, with a focus on emerging nanomedicine and therapies that capitalize on cell-specific signaling in glioblastoma. We follow this summary by discussing computational modeling approaches focused on optimizing these emerging nanotherapeutics for brain cancer. We conclude by illustrating how mathematical analysis can be used to compare the delivery of a high potential anticancer molecule, delphinidin, in both free and nanoparticle loaded forms across the blood-brain barrier for glioblastoma.
引用
收藏
页数:14
相关论文
共 91 条
[1]   Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights [J].
Alfonso, J. C. L. ;
Koehn-Luque, A. ;
Stylianopoulos, T. ;
Feuerhake, F. ;
Deutsch, A. ;
Hatzikirou, H. .
SCIENTIFIC REPORTS, 2016, 6
[2]   Glioblastoma multiforme: Pathogenesis and treatment [J].
Alifieris, Constantinos ;
Trafalis, Dimitrios T. .
PHARMACOLOGY & THERAPEUTICS, 2015, 152 :63-82
[3]   Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ1-42-induced oxidative stress [J].
Ul Amin, Faiz ;
Shah, Shahid Ali ;
Badshah, Haroon ;
Khan, Mehtab ;
Kim, Myeong Ok .
JOURNAL OF NANOBIOTECHNOLOGY, 2017, 15
[4]   Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory [J].
Andres-Lacueva, C ;
Shukitt-Hale, B ;
Galli, RL ;
Jauregui, O ;
Lamuela-Raventos, RM ;
Joseph, JA .
NUTRITIONAL NEUROSCIENCE, 2005, 8 (02) :111-120
[5]  
[Anonymous], 1993, NEW WHO CLASSIFICATI
[6]  
[Anonymous], 2013, SOJ PHARM PHARM SCI, DOI [DOI 10.15226/2374, DOI 10.15226/2374-6866/1/1/00103]
[7]   Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system [J].
Aryal, Muna ;
Arvanitis, Costas D. ;
Alexander, Phillip M. ;
McDannold, Nathan .
ADVANCED DRUG DELIVERY REVIEWS, 2014, 72 :94-109
[8]   A mathematical model for the transport of paclitaxel (taxol) across the blood-brain barrier [J].
Bandara, S. ;
Diehl, M. ;
Fricker, G. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2007, 85 (A7) :1065-1071
[9]   Active targeting of brain tumors using nanocarriers [J].
Beduneau, Arnaud ;
Saulnier, Patrick ;
Benoit, Jean-Pierre .
BIOMATERIALS, 2007, 28 (33) :4947-4967
[10]   Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: A review [J].
Bicker, Joana ;
Alves, Gilberto ;
Fortuna, Ana ;
Falcao, Amilcar .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2014, 87 (03) :409-432