High cycling stability of anodes for lithium-ion batteries based on Fe3O4 nanoparticles and poly(acrylic acid) binder

被引:38
作者
Maroni, F. [1 ]
Gabrielli, S. [1 ]
Palmieri, A. [1 ]
Marcantoni, E. [1 ]
Croce, F. [2 ]
Nobili, F. [1 ]
机构
[1] Univ Camerino, Sez Chim, Scuola Sci & Tecnol, Via S Agostino 1, I-62032 Camerino, MC, Italy
[2] Univ G dAnnunzio, Dipartimento Farm, Via Vestini 31, I-66100 Chieti, Italy
关键词
Li-ion battery; Anode; Iron oxide; Conversion; Binder; ETHYLENE CARBONATE; IRON FLUORIDE; ELECTROLYTE; PERFORMANCE; CAPACITY; STATE; INTERCALATION; NANOCOMPOSITE; GRAPHENE; MECHANISMS;
D O I
10.1016/j.jpowsour.2016.09.106
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe3O4 nanoparticles synthesized by a base catalyzed method are tested as anode material for Li-ion batteries. The pristine nanoparticles are morphologically characterized showing an average size of 11 nm. Electrodes are prepared using high-molecular weight Poly (acrylic acid) as improved binder and ethanol as low cost and environmentally friendly solvent. The evaluation of electrochemical properties shows high specific capacity values of 857 mA hg(-1) after 200 cycles at a specific current of 462 mAg(-1), as well as an excellent rate capability with specific current values up to 18480 mAg(-1). To the best of our knowledge, this is the first report of Fe3O4 nanoparticles cycling with PAA as binder. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 57 条
[1]   Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4 [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL ;
Jumas, JC ;
Olivier-Fourcade, J .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (01) :16-21
[2]   A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures [J].
Aurbach, D ;
Markovsky, B ;
Shechter, A ;
EinEli, Y ;
Cohen, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) :3809-3820
[3]   Failure and stabilization mechanisms of graphite electrodes [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Schechter, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (12) :2195-2206
[4]   THE BEHAVIOR OF LITHIUM ELECTRODES IN PROPYLENE AND ETHYLENE CARBONATE - THE MAJOR FACTORS THAT INFLUENCE LI CYCLING EFFICIENCY [J].
AURBACH, D ;
GOFER, Y ;
BENZION, M ;
APED, P .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1992, 339 (1-2) :451-471
[5]  
Aurbach D., 1994, J ELECTROCHEM SOC, V141
[6]   Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode [J].
Ban, Chunmei ;
Wu, Zhuangchun ;
Gillaspie, Dane T. ;
Chen, Le ;
Yan, Yanfa ;
Blackburn, Jeffrey L. ;
Dillon, Anne C. .
ADVANCED MATERIALS, 2010, 22 (20) :E145-+
[7]  
Barsoukov M.J.R., 2005, IMPEDANCE SPECTROSCO
[8]   Enhanced stability of SnSb/graphene anode through alternative binder and electrolyte additive for lithium ion batteries application [J].
Birrozzi, Agnese ;
Maroni, Fabio ;
Raccichini, Rinaldo ;
Tossici, Roberto ;
Marassi, Roberto ;
Nobili, Francesco .
JOURNAL OF POWER SOURCES, 2015, 294 :248-253
[9]   A NONLINEAR LEAST-SQUARES FIT PROCEDURE FOR ANALYSIS OF IMMITTANCE DATA OF ELECTROCHEMICAL SYSTEMS [J].
BOUKAMP, BA .
SOLID STATE IONICS, 1986, 20 (01) :31-44
[10]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192