Direct Recycling of Spent NCM Cathodes through Ionothermal Lithiation

被引:208
作者
Wang, Tao [1 ,2 ]
Luo, Huimin [3 ]
Bai, Yaocai [3 ]
Li, Jianlin [3 ]
Belharouak, Ilias [3 ]
Dai, Sheng [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Dept Chem, Knoxville, TN 37916 USA
[3] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA
关键词
batteries; direct recycling; ionic liquids; ionothermal synthesis; structure-property relationships; LITHIUM-ION BATTERY; CARBONATE; RECOVERY; LIQUIDS; COBALT; REGENERATION; PERFORMANCE; SEPARATION; ACID;
D O I
10.1002/aenm.202001204
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ionic liquids (ILs) are a family of nonconventional molten salts that offer many advantages, such as negligible vapor pressures, negligible flammability, wide liquidus ranges, good thermal stability, and much synthesis flexibility. The unique solvation environment of these ILs provides new reaction or flux media for controlling formation of solid-state materials with a minimum perturbation of morphologies. A successful lithiation via ionothermal synthesis using a cost-effective Li halide as Li source and recyclable ILs as solvents is reported here for the direct recycling of LiNi1/3Co1/3Mn1/3O2(NCM 111) cathodes. In addition, the ionic liquids can be readily recycled and reused after ionothermal lithiation. The lithiation of spent cathodes can enable the direct recycling of spent cathode materials in lithium-ion batteries.
引用
收藏
页数:6
相关论文
共 45 条
[1]  
Azizi-Toupkanloo H, 2017, J IRAN CHEM SOC, V14, P1281, DOI 10.1007/s13738-017-1079-z
[2]   Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3CO1/3Mn1/3)O2 [J].
Belharouak, I ;
Lu, WQ ;
Vissers, D ;
Amine, K .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (02) :329-335
[3]   Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications [J].
Belharouak, I ;
Sun, YK ;
Liu, J ;
Amine, K .
JOURNAL OF POWER SOURCES, 2003, 123 (02) :247-252
[4]   A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries [J].
Chagnes, Alexandre ;
Pospiech, Beata .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2013, 88 (07) :1191-1199
[5]   Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries [J].
Chen, Mengyuan ;
Ma, Xiaotu ;
Chen, Bin ;
Arsenault, Renata ;
Karlson, Peter ;
Simon, Nakia ;
Wang, Yan .
JOULE, 2019, 3 (11) :2622-2646
[6]   Renovation of LiCoO2 with outstanding cycling stability by thermal treatment with Li2CO3 from spent Li-ion batteries [J].
Chen, Shi ;
He, Tao ;
Lu, Yun ;
Su, Yuefeng ;
Tian, Jun ;
Li, Ning ;
Chen, Gang ;
Bao, Liying ;
Wu, Feng .
JOURNAL OF ENERGY STORAGE, 2016, 8 :262-273
[7]   Examining different recycling processes for lithium-ion batteries [J].
Ciez, Rebecca E. ;
Whitacre, J. F. .
NATURE SUSTAINABILITY, 2019, 2 (02) :148-156
[8]   Preparation of silica aerogel using ionic liquids as solvents [J].
Dai, S ;
Ju, YH ;
Gao, HJ ;
Lin, JS ;
Pennycook, SJ ;
Barnes, CE .
CHEMICAL COMMUNICATIONS, 2000, (03) :243-244
[9]   Recycled Lithium from Simulated Pyrometallurgical Slag by Chlorination Roasting [J].
Dang, Hui ;
Wang, Benfeng ;
Chang, Zhidong ;
Wu, Xue ;
Feng, Jingge ;
Zhou, Hualei ;
Li, Wenjun ;
Sun, Changyan .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (10) :13160-13167
[10]   Lithium-ion battery recycling processes: Research towards a sustainable course [J].
Gaines, Linda .
SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2018, 17