Imaging of land mines by the globally convergent convexification method using a simplified mathematical model

被引:2
作者
Xin, Jianguo [1 ]
Klibanov, Michael V. [1 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
关键词
imaging of land mines; global convergence; convexification method; inverse problem;
D O I
10.1080/17415970802015856
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new 2-D implementation of the globally convergent convexification numerical method for coefficient inverse problems is described. Based on a simplified mathematical model, numerical results from imaging of targets which mimic antipersonnel land mines demonstrate that the algorithm can detect the location(s) of the inclusion(s) from the background medium, as well as identify the material property of the inclusion(s) and the background. With the 'tails' incorporated in the new development, the computational efficiency of the algorithm is dramatically improved relatively to the previous 'tail-free' implementation.
引用
收藏
页码:631 / 653
页数:23
相关论文
共 20 条
  • [1] [Anonymous], 1986, INVERSE PROBLEMS MAT
  • [2] Bukhgeim A. L., 1981, SOV MATH DOKL, V24, P244
  • [3] INVERSE PROBLEMS FOR A PERTURBED DISSIPATIVE HALF-SPACE
    CHENEY, M
    ISAACSON, D
    [J]. INVERSE PROBLEMS, 1995, 11 (04) : 865 - 888
  • [4] De Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
  • [5] Dennis J.E., 1996, NUMERICAL METHODS UN
  • [6] Fletcher R., 1981, PRACTICAL METHODS OP
  • [7] Numerical solution of a subsurface imaging inverse problem
    Gryazin, YA
    Klibanov, MV
    Lucas, TR
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2001, 62 (02) : 664 - 683
  • [8] Jackson J. D., 1998, CLASSICAL ELECTRODYN
  • [9] Kelley C.T., 1999, Iterative Methods for Optimization, DOI DOI 10.1137/1.9781611970920
  • [10] Klibanov M.V., 2004, INVER ILL POSED PROB, DOI 10.1515/9783110915549