Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics

被引:105
作者
Ding, Michael Q. [1 ]
Chen, Lujia [1 ]
Cooper, Gregory F. [1 ]
Young, Jonathan D. [1 ]
Lu, Xinghua [1 ,2 ]
机构
[1] Univ Pittsburgh, Dept Biomed Informat, Sch Med, Pittsburgh, PA 15206 USA
[2] Univ Pittsburgh, Ctr Translat Bioinformat, Pittsburgh, PA 15206 USA
关键词
ADVANCED BREAST-CANCER; DRUG-SENSITIVITY; ANTICANCER DRUGS; NETWORKS; PALBOCICLIB; LETROZOLE; MEDICINE;
D O I
10.1158/1541-7786.MCR-17-0378
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Precision oncology involves identifying drugs that will effectively treat a tumor and then prescribing an optimal clinical treatment regimen. However, most first-line chemotherapy drugs do not have biomarkers to guide their application. For molecularly targeted drugs, using the genomic status of a drug target as a therapeutic indicator has limitations. In this study, machine learning methods (e.g., deep learning) were used to identify informative features from genome-scale omics data and to train classifiers for predicting the effectiveness of drugs in cancer cell lines. The methodology introduced here can accurately predict the efficacy of drugs, regardless of whether they are molecularly targeted or nonspecific chemotherapy drugs. This approach, on a per-drug basis, can identify sensitive cancer cells with an average sensitivity of 0.82 and specificity of 0.82; on a per-cell line basis, it can identify effective drugs with an average sensitivity of 0.80 and specificity of 0.82. This report describes a data-driven precision medicine approach that is not only generalizable but also optimizes therapeutic efficacy. The framework detailed herein, when successfully translated to clinical environments, could significantly broaden the scope of precision oncology beyond targeted therapies, benefiting an expanded proportion of cancer patients.
引用
收藏
页码:269 / 278
页数:10
相关论文
共 27 条
[1]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[2]   Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model [J].
Chen, Lujia ;
Cai, Chunhui ;
Chen, Vicky ;
Lu, Xinghua .
BMC BIOINFORMATICS, 2016, 17
[3]   Trans-species learning of cellular signaling systems with bimodal deep belief networks [J].
Chen, Lujia ;
Cai, Chunhui ;
Chen, Vicky ;
Lu, Xinghua .
BIOINFORMATICS, 2015, 31 (18) :3008-3015
[4]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[5]   A community effort to assess and improve drug sensitivity prediction algorithms [J].
Costello, James C. ;
Heiser, Laura M. ;
Georgii, Elisabeth ;
Gonen, Mehmet ;
Menden, Michael P. ;
Wang, Nicholas J. ;
Bansal, Mukesh ;
Ammad-ud-din, Muhammad ;
Hintsanen, Petteri ;
Khan, Suleiman A. ;
Mpindi, John-Patrick ;
Kallioniemi, Olli ;
Honkela, Antti ;
Aittokallio, Tero ;
Wennerberg, Krister ;
Collins, James J. ;
Gallahan, Dan ;
Singer, Dinah ;
Saez-Rodriguez, Julio ;
Kaski, Samuel ;
Gray, Joe W. ;
Stolovitzky, Gustavo .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1202-U57
[6]   Palbociclib and Letrozole in Advanced Breast Cancer [J].
Finn, Richard S. ;
Martin, Miguel ;
Rugo, Hope S. ;
Jones, Stephen ;
Im, Seock-Ah ;
Gelmon, Karen ;
Harbeck, Nadia ;
Lipatov, Oleg N. ;
Walshe, Janice M. ;
Moulder, Stacy ;
Gauthier, Eric ;
Lu, Dongrui R. ;
Randolph, Sophia ;
Dieras, Veronique ;
Slamon, Dennis J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (20) :1925-1936
[7]   The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study [J].
Finn, Richard S. ;
Crown, John P. ;
Lang, Istvan ;
Boer, Katalin ;
Bondarenko, Igor M. ;
Kulyk, Sergey O. ;
Ettl, Johannes ;
Patel, Ravindranath ;
Pinter, Tamas ;
Schmidt, Marcus ;
Shparyk, Yaroslav ;
Thummala, Anu R. ;
Voytko, Nataliya L. ;
Fowst, Camilla ;
Huang, Xin ;
Kim, Sindy T. ;
Randolph, Sophia ;
Slamon, Dennis J. .
LANCET ONCOLOGY, 2015, 16 (01) :25-35
[8]   PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro [J].
Finn, Richard S. ;
Dering, Judy ;
Conklin, Dylan ;
Kalous, Ondrej ;
Cohen, David J. ;
Desai, Amrita J. ;
Ginther, Charles ;
Atefi, Mohammad ;
Chen, Isan ;
Fowst, Camilla ;
Los, Gerret ;
Slamon, Dennis J. .
BREAST CANCER RESEARCH, 2009, 11 (05)
[9]   Precision oncology: a strategy we were not ready to deploy [J].
Fojo, Tito .
SEMINARS IN ONCOLOGY, 2016, 43 (01) :9-12
[10]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22