Bioprinting for Neural Tissue Engineering

被引:147
作者
Knowlton, Stephanie [1 ]
Anand, Shivesh [2 ]
Shah, Twisha [3 ]
Tasoglu, Savas [1 ,2 ,4 ,5 ,6 ]
机构
[1] Univ Connecticut, Dept Biomed Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
[3] Univ Connecticut, Dept Physiol & Neurobiol, Storrs, CT 06269 USA
[4] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[5] Univ Connecticut, Inst Collaborat Hlth Intervent & Policy, Storrs, CT 06269 USA
[6] Univ Connecticut, Connecticut Inst Brain & Cognit Sci, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
CENTRAL-NERVOUS-SYSTEM; ON-A-CHIP; ANIMAL-MODELS; CROSS-LINKING; HYALURONIC-ACID; CELL-ADHESION; CNS INJURY; STEM-CELLS; 3D; SCAFFOLDS;
D O I
10.1016/j.tins.2017.11.001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues.
引用
收藏
页码:31 / 46
页数:16
相关论文
共 109 条
[1]   Cell sheet based bioink for 3D bioprinting applications [J].
Bakirci, E. ;
Toprakhisar, B. ;
Zeybek, M. C. ;
Ince, G. O. ;
Koc, B. .
BIOFABRICATION, 2017, 9 (02)
[2]   The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability [J].
Billiet, Thomas ;
Gevaert, Elien ;
De Schryver, Thomas ;
Cornelissen, Maria ;
Dubruel, Peter .
BIOMATERIALS, 2014, 35 (01) :49-62
[3]  
Boland Thomas, 2006, Biotechnology Journal, V1, P910, DOI 10.1002/biot.200600081
[4]  
Breuls Roel G M, 2008, Open Orthop J, V2, P103, DOI 10.2174/1874325000802010103
[5]   Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering [J].
Carlier, Aurelie ;
Skvortsov, Gozde Akdeniz ;
Hafezi, Forough ;
Ferraris, Eleonora ;
Patterson, Jennifer ;
Koc, Bahattin ;
Van Oosterwyck, Hans .
BIOFABRICATION, 2016, 8 (02)
[6]   Stiffness of Photocrosslinked RGD-Alginate Gels Regulates Adipose Progenitor Cell Behavior [J].
Chandler, Emily M. ;
Berglund, Caroline M. ;
Lee, Jason S. ;
Polacheck, William J. ;
Gleghorn, Jason P. ;
Kirby, Brian J. ;
Fischbach, Claudia .
BIOTECHNOLOGY AND BIOENGINEERING, 2011, 108 (07) :1683-1692
[7]  
Chandra P, 2015, BIOMARK INSIGHTS, V10, P105, DOI [10.4137/BMI.S20057, 10.4137/BMIMI.S20057]
[8]   Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats [J].
Chen, Chong ;
Zhao, Ming-liang ;
Zhang, Ren-kun ;
Lu, Gang ;
Zhao, Chang-yu ;
Fu, Feng ;
Sun, Hong-tao ;
Zhang, Sai ;
Tu, Yue ;
Li, Xiao-hong .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (05) :1324-1332
[9]   In vivo alpha-synuclein overexpression in rodents: A useful model of Parkinson's disease? [J].
Chesselet, Marie-Francoise .
EXPERIMENTAL NEUROLOGY, 2008, 209 (01) :22-27
[10]   HEPATOCYTE CULTURE ON BIODEGRADABLE POLYMERIC SUBSTRATES [J].
CIMA, LG ;
INGBER, DE ;
VACANTI, JP ;
LANGER, R .
BIOTECHNOLOGY AND BIOENGINEERING, 1991, 38 (02) :145-158