Modeling of a new recuperative thermoelectric cycle for a tumble dryer

被引:19
作者
Junior, C. [1 ]
Chen, G. [2 ]
Koehler, J. [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Thermodynam, D-38106 Braunschweig, Germany
[2] MIT, Dept Mech Engn, Cambridge, MA 02467 USA
关键词
Internal heat exchanger; Refrigerant; Compression cycle; Moisture extraction rate; Peltier effect; Semiconductor material; ENERGY EFFICIENCY; PERFORMANCE; DEVICES; COOLER;
D O I
10.1016/j.ijheatmasstransfer.2011.11.008
中图分类号
O414.1 [热力学];
学科分类号
摘要
Convection tumble dryers, employed with compression heat pumps, raise questions about the environmental friendliness of refrigerants utilized in the process. An attractive alternative to substitute these conventional systems is thermoelectric heat pumps which operate reliably, silently, and without using a harmful refrigerant. A new cycle that combines thermoelectric heat pumping with a recuperating heat exchanger is introduced. To evaluate the performance of such a dryer, a comprehensive model was developed, taking into account temperature dependent materials properties, contact resistances as well as thermal and electrical resistances. The model was validated on experimental data of a prototype thermoelectric heat exchanger. Modeling results show that thermoelectric heat-pumping-based convection tumble dryers are a promising technology. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1536 / 1543
页数:8
相关论文
共 31 条
[1]   Improving the energy efficiency of conventional tumbler clothes drying systems [J].
Bansal, PK ;
Braun, JE ;
Groll, EA .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2001, 25 (15) :1315-1332
[2]   Energy efficiency analysis of air cycle heat pump dryers [J].
Braun, JE ;
Bansal, PK ;
Groll, EA .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2002, 25 (07) :954-965
[3]   Recent developments in thermoelectric materials [J].
Chen, G ;
Dresselhaus, MS ;
Dresselhaus, G ;
Fleurial, JP ;
Caillat, T .
INTERNATIONAL MATERIALS REVIEWS, 2003, 48 (01) :45-66
[4]   An experimental and numerical study of a thermoelectric air-cooling and air-heating system [J].
Cosnier, Matthieu ;
Fraisse, Gilles ;
Luo, Lingai .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2008, 31 (06) :1051-1062
[5]   Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport [J].
da Silva, LW ;
Kaviany, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (10-11) :2417-2435
[6]  
Goldsmid HJ, 2010, SPRINGER SER MATER S, V121, P1
[7]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232
[8]   Enhancing performance of thermoelectric coolers through the application of distributed control [J].
Harvey, R. D. ;
Walker, D. G. ;
Frampton, K. D. .
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2007, 30 (02) :330-336
[9]   Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states [J].
Heremans, Joseph P. ;
Jovovic, Vladimir ;
Toberer, Eric S. ;
Saramat, Ali ;
Kurosaki, Ken ;
Charoenphakdee, Anek ;
Yamanaka, Shinsuke ;
Snyder, G. Jeffrey .
SCIENCE, 2008, 321 (5888) :554-557
[10]  
Hogan T., 2006, Thermoelectrics Handbook: Macro to Nano