Extended Mittag-Leffler function and associated fractional calculus operators

被引:11
作者
Choi, Junesang [2 ]
Parmar, Rakesh K. [1 ]
Chopra, Purnima [3 ]
机构
[1] Govt Coll Engn & Technol, Dept Math, Bikaner 334004, Rajasthan, India
[2] Dongguk Univ, Dept Math, Gyeongju 780714, South Korea
[3] Marudhar Engn Coll, Dept Math, Bikaner 334004, Rajasthan, India
关键词
Pochhammer symbol; generalized pochhammer symbol; generalized hypergeometric functions; modified Bessel functions; Mittag-Leffler function; Wright hypergeometric function; H-function; generalized Mittag-Leffler function; extended confluent hypergeometric function; Mellin transform; Euler-Beta transform; Laplace transform; Whittaker transform; fractional calculus operators; HYPERGEOMETRIC-FUNCTIONS; GENERATING-FUNCTIONS; SYMBOL;
D O I
10.1515/gmj-2019-2030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [H. M. Srivastava, A. cetinkaya and I. Onur Kiymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appi. Math. Comput. 226 (2014), 484-491] by means of the generalized Pochhammer symbol, we introduce here a new extension of the generalized Mittag-Leffler function. We then systematically investigate several properties of the extended Mittag-Leffler function including some basic properties, Mellin, Euler-Beta, Laplace and Whittaker transforms. Furthermore, certain properties of the Riemann-Liouville fractional integrals and derivatives associated with the extended Mittag-Leffler function are also investigated. Some interesting special cases of our main results are pointed out.
引用
收藏
页码:199 / 209
页数:11
相关论文
共 43 条
[1]  
AGARWAL RP, 1953, CR HEBD ACAD SCI, V236, P2031
[2]  
[Anonymous], THEORY APPL ANAL MET
[3]  
[Anonymous], BOUNDARY VALUE PROBL
[4]  
[Anonymous], MATH APPL
[5]  
Chaudhry MA, 2002, CLASS INCOMPLETE GAM
[6]  
Diaz R, 2007, DIVULGACIONES MATEMA, V15, P179
[7]  
Dorrego G. A., 2012, International Journal of Contemporary Mathematical Sciences, V7, P705
[8]  
Erdelyi A., 1953, Higher transcendental functions, VI
[9]  
Fox C., 1961, Trans. Amer. Math. Soc., V98, P395, DOI DOI 10.2307/1993339
[10]   On the generalized Mittag-Leffler type functions [J].
Gorenflo, R ;
Kilbas, AA ;
Rogosin, SV .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 7 (3-4) :215-224