Selection of the magnetic quantum number in resonant ionization of neon using an XUV-IR two-color laser field

被引:8
作者
Patchkovskii, Serguei [1 ]
Vrakking, Marc J. J. [1 ]
Villeneuve, D. M. [2 ,3 ]
Niikura, Hiromichi [4 ]
机构
[1] Max Born Inst, Max Born Str 2A, D-12489 Berlin, Germany
[2] Natl Res Council Canada, Joint Attosecond Sci Lab, 100 Sussex Dr, Ottawa, ON K1A 0R6, Canada
[3] Univ Ottawa, 100 Sussex Dr, Ottawa, ON K1A 0R6, Canada
[4] Waseda Univ, Shinjyuku Ku, Okubo 3-4-1, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
attosecond science; high-harmonic generation; intense field-matter interaction; ELECTRON; PHOTOELECTRON; DYNAMICS;
D O I
10.1088/1361-6455/ab82e0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A recent experiment (Villeneuveet al2017Science3561150) has shown that two-color photoionization of neon by the combination of an attosecond XUV pulse train and a moderately strong, linearly polarized IR pulse can preferentially produce photoelectrons with orbital angular quantum numberl= 3 (f-wave) and magnetic quantum numberm= 0. This result was rationalized by the occurrence of different Stark shifts ofm= 0 and |m| = 1 sub-levels in the IR laser field. Here we perform 3D time-dependent Schrodinger equation calculations with a neon effective potential to identify the mechanism for the selective excitation and ionization ofm= 0 sub-levels. Calculations of the ionization and excitation yields as a function of the IR intensity and the XUV and IR photon energy reveal that a coupling between two dominant ionization channels involving 3p and 3d intermediate excitations is responsible for the observedm-level selectivity. We compare calculated and measured photoelectron velocity map images and ionization yields over a range of IR intensities and XUV and IR photon energies, and confirm that them= 0 or |m| = 1 channel, and thus a single set of the quantum numbers, (J(ion),l,m), can be selected by an appropriate choice of these parameters.
引用
收藏
页数:14
相关论文
共 26 条
  • [1] Bayer T, 2016, ADV CHEM PHYS, V159, P235
  • [2] Cardona M, 1978, PHOTOEMISSION SOLIDS
  • [3] ANGULAR DISTRIBUTION OF PHOTOELECTRONS
    COOPER, J
    ZARE, RN
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1968, 48 (02) : 942 - &
  • [4] Cooper J, 1969, Lectures in Theoretical Physics: Atomic Collision Processes, V11c, P317
  • [5] Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen
    Eppink, ATJB
    Parker, DH
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (09) : 3477 - 3484
  • [6] ABOVE-THRESHOLD IONIZATION WITH SUBPICOSECOND LASER-PULSES
    FREEMAN, RR
    BUCKSBAUM, PH
    MILCHBERG, H
    DARACK, S
    SCHUMACHER, D
    GEUSIC, ME
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (10) : 1092 - 1095
  • [7] Attosecond dynamics through a Fano resonance: Monitoring the birth of a photoelectron
    Gruson, V.
    Barreau, L.
    Jimenez-Galan, A.
    Risoud, F.
    Caillat, J.
    Maquet, A.
    Carre, B.
    Lepetit, F.
    Hergott, J. -F.
    Ruchon, T.
    Argenti, L.
    Taieb, R.
    Martin, F.
    Salieres, P.
    [J]. SCIENCE, 2016, 354 (6313) : 734 - 738
  • [8] Phase-resolved attosecond near-threshold photoionization of molecular nitrogen
    Haessler, S.
    Fabre, B.
    Higuet, J.
    Caillat, J.
    Ruchon, T.
    Breger, P.
    Carre, B.
    Constant, E.
    Maquet, A.
    Mevel, E.
    Salieres, P.
    Taieb, R.
    Mairesse, Y.
    [J]. PHYSICAL REVIEW A, 2009, 80 (01):
  • [9] Benchmarking strong-field ionization with atomic hydrogen
    Kielpinski, D.
    Sang, R. T.
    Litvinyuk, I. V.
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (20)
  • [10] Amplitude and Phase Reconstruction of Electron Wave Packets for Probing Ultrafast Photoionization Dynamics
    Kim, Kyung Taec
    Ko, Dong Hyuk
    Park, Juyun
    Choi, Nark Nyul
    Kim, Chul Min
    Ishikawa, Kenichi L.
    Lee, Jongmin
    Nam, Chang Hee
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (09)