Selection of the magnetic quantum number in resonant ionization of neon using an XUV-IR two-color laser field

被引:8
作者
Patchkovskii, Serguei [1 ]
Vrakking, Marc J. J. [1 ]
Villeneuve, D. M. [2 ,3 ]
Niikura, Hiromichi [4 ]
机构
[1] Max Born Inst, Max Born Str 2A, D-12489 Berlin, Germany
[2] Natl Res Council Canada, Joint Attosecond Sci Lab, 100 Sussex Dr, Ottawa, ON K1A 0R6, Canada
[3] Univ Ottawa, 100 Sussex Dr, Ottawa, ON K1A 0R6, Canada
[4] Waseda Univ, Shinjyuku Ku, Okubo 3-4-1, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
attosecond science; high-harmonic generation; intense field-matter interaction; ELECTRON; PHOTOELECTRON; DYNAMICS;
D O I
10.1088/1361-6455/ab82e0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A recent experiment (Villeneuveet al2017Science3561150) has shown that two-color photoionization of neon by the combination of an attosecond XUV pulse train and a moderately strong, linearly polarized IR pulse can preferentially produce photoelectrons with orbital angular quantum numberl= 3 (f-wave) and magnetic quantum numberm= 0. This result was rationalized by the occurrence of different Stark shifts ofm= 0 and |m| = 1 sub-levels in the IR laser field. Here we perform 3D time-dependent Schrodinger equation calculations with a neon effective potential to identify the mechanism for the selective excitation and ionization ofm= 0 sub-levels. Calculations of the ionization and excitation yields as a function of the IR intensity and the XUV and IR photon energy reveal that a coupling between two dominant ionization channels involving 3p and 3d intermediate excitations is responsible for the observedm-level selectivity. We compare calculated and measured photoelectron velocity map images and ionization yields over a range of IR intensities and XUV and IR photon energies, and confirm that them= 0 or |m| = 1 channel, and thus a single set of the quantum numbers, (J(ion),l,m), can be selected by an appropriate choice of these parameters.
引用
收藏
页数:14
相关论文
共 26 条
[1]  
Bayer T, 2016, ADV CHEM PHYS, V159, P235
[2]  
Cardona M., 1978, Photoemission in Solids I: General Principles
[3]   ANGULAR DISTRIBUTION OF PHOTOELECTRONS [J].
COOPER, J ;
ZARE, RN .
JOURNAL OF CHEMICAL PHYSICS, 1968, 48 (02) :942-&
[4]  
Cooper J., 1969, LECTURES THEORETIC C, VXIc, P317
[5]   Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen [J].
Eppink, ATJB ;
Parker, DH .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (09) :3477-3484
[6]   ABOVE-THRESHOLD IONIZATION WITH SUBPICOSECOND LASER-PULSES [J].
FREEMAN, RR ;
BUCKSBAUM, PH ;
MILCHBERG, H ;
DARACK, S ;
SCHUMACHER, D ;
GEUSIC, ME .
PHYSICAL REVIEW LETTERS, 1987, 59 (10) :1092-1095
[7]   Attosecond dynamics through a Fano resonance: Monitoring the birth of a photoelectron [J].
Gruson, V. ;
Barreau, L. ;
Jimenez-Galan, A. ;
Risoud, F. ;
Caillat, J. ;
Maquet, A. ;
Carre, B. ;
Lepetit, F. ;
Hergott, J. -F. ;
Ruchon, T. ;
Argenti, L. ;
Taieb, R. ;
Martin, F. ;
Salieres, P. .
SCIENCE, 2016, 354 (6313) :734-738
[8]   Phase-resolved attosecond near-threshold photoionization of molecular nitrogen [J].
Haessler, S. ;
Fabre, B. ;
Higuet, J. ;
Caillat, J. ;
Ruchon, T. ;
Breger, P. ;
Carre, B. ;
Constant, E. ;
Maquet, A. ;
Mevel, E. ;
Salieres, P. ;
Taieb, R. ;
Mairesse, Y. .
PHYSICAL REVIEW A, 2009, 80 (01)
[9]   Benchmarking strong-field ionization with atomic hydrogen [J].
Kielpinski, D. ;
Sang, R. T. ;
Litvinyuk, I. V. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (20)
[10]   Amplitude and Phase Reconstruction of Electron Wave Packets for Probing Ultrafast Photoionization Dynamics [J].
Kim, Kyung Taec ;
Ko, Dong Hyuk ;
Park, Juyun ;
Choi, Nark Nyul ;
Kim, Chul Min ;
Ishikawa, Kenichi L. ;
Lee, Jongmin ;
Nam, Chang Hee .
PHYSICAL REVIEW LETTERS, 2012, 108 (09)