Experimental analysis and modeling of single-cell time-course data

被引:6
作者
Bijman, Eline Yafele
Kaltenbach, Hans-Michael
Stelling, Jorg [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland
关键词
Single-cell analysis; Longitudinal data; Mechanistic models; Inference; GENE-EXPRESSION; VARIABILITY; INFERENCE; HETEROGENEITY; DYNAMICS;
D O I
10.1016/j.coisb.2021.100359
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Contemporary single-cell experiments produce vast amounts of data, but the interpretation of these data is far from straightforward. In particular, understanding mechanisms and sources of cell-to-cell variability, given highly complex and nonlinear cellular networks, precludes intuitive interpretation. It requires careful computational and mathematical analysis instead. Here, we discuss different types of single-cell data and computational, model-based methods currently used to analyze them. We argue that mechanistic models incorporating subpopulation or cell-specific parameters can help to identify sources of variation and to understand experimentally observed behaviors. We highlight how data types and qualities, together with the nonlinearity of single-cell dynamics, make it challenging to identify the correct underlying biological mechanisms and we outline avenues to address these challenges.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] scMET: Bayesian modeling of DNA methylation heterogeneity at single-cell resolution
    Kapourani, Chantriolnt-Andreas
    Argelaguet, Ricard
    Sanguinetti, Guido
    Vallejos, Catalina A.
    GENOME BIOLOGY, 2021, 22 (01)
  • [42] Properties of sparse penalties on inferring gene regulatory networks from time-course gene expression data
    Liu, Li-Zhi
    Wu, Fang-Xiang
    Zhang, Wen-Jun
    IET SYSTEMS BIOLOGY, 2015, 9 (01) : 16 - 24
  • [43] Reconstructing gene regulatory networks in single-cell transcriptomic data analysis
    Dai, Hao
    Jin, Qi-Qi
    Li, Lin
    Chen, Luo-Nan
    ZOOLOGICAL RESEARCH, 2020, 41 (06) : 599 - 604
  • [44] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3234 - 3244
  • [45] BASiCS: Bayesian Analysis of Single-Cell Sequencing Data
    Vallejos, Catalina A.
    Marioni, John C.
    Richardson, Sylvia
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (06)
  • [46] Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data
    Holland, Christian H.
    Tanevski, Jovan
    Perales-Paton, Javier
    Gleixner, Jan
    Kumar, Manu P.
    Mereu, Elisabetta
    Joughin, Brian A.
    Stegle, Oliver
    Lauffenburger, Douglas A.
    Heyn, Holger
    Szalai, Bence
    Saez-Rodriguez, Julio
    GENOME BIOLOGY, 2020, 21 (01)
  • [47] Single-Cell Analysis: The Differences That Kill
    Tay, Savas
    CELL, 2015, 162 (06) : 1208 - 1210
  • [48] Deep Learning in Single-cell Analysis
    Molho, Dylan
    Ding, Jiayuan
    Tang, Wenzhuo
    Li, Zhaoheng
    Wen, Hongzhi
    Wang, Yixin
    Venegas, Julian
    Jin, Wei
    Liu, Renming
    Su, Runze
    Danaher, Patrick
    Yang, Robert
    Lei, Yu Leo
    Xie, Yuying
    Tang, Jiliang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (03)
  • [49] Single-cell analysis targeting the proteome
    Labib, Mahmoud
    Kelley, Shana O.
    NATURE REVIEWS CHEMISTRY, 2020, 4 (03) : 143 - 158
  • [50] Single-Cell Analysis in Cancer Genomics
    Saadatpour, Assieh
    Lai, Shujing
    Guo, Guoji
    Yuan, Guo-Cheng
    TRENDS IN GENETICS, 2015, 31 (10) : 576 - 586