Experimental analysis and modeling of single-cell time-course data

被引:6
|
作者
Bijman, Eline Yafele
Kaltenbach, Hans-Michael
Stelling, Jorg [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland
关键词
Single-cell analysis; Longitudinal data; Mechanistic models; Inference; GENE-EXPRESSION; VARIABILITY; INFERENCE; HETEROGENEITY; DYNAMICS;
D O I
10.1016/j.coisb.2021.100359
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Contemporary single-cell experiments produce vast amounts of data, but the interpretation of these data is far from straightforward. In particular, understanding mechanisms and sources of cell-to-cell variability, given highly complex and nonlinear cellular networks, precludes intuitive interpretation. It requires careful computational and mathematical analysis instead. Here, we discuss different types of single-cell data and computational, model-based methods currently used to analyze them. We argue that mechanistic models incorporating subpopulation or cell-specific parameters can help to identify sources of variation and to understand experimentally observed behaviors. We highlight how data types and qualities, together with the nonlinearity of single-cell dynamics, make it challenging to identify the correct underlying biological mechanisms and we outline avenues to address these challenges.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Inferring Gene Regulatory Networks from Single-Cell Time-Course Data Based on Temporal Convolutional Networks
    Tan, Dayu
    Wang, Jing
    Cheng, Zhaolong
    Su, Yansen
    Zheng, Chunhou
    CURRENT BIOINFORMATICS, 2024, 19 (08) : 752 - 764
  • [2] Stochastic models for single-cell data: Current challenges and the way forward
    Hsu, Ian S.
    Moses, Alan M.
    FEBS JOURNAL, 2022, 289 (03) : 647 - 658
  • [3] Elucidating dynamic cell lineages and gene networks in time-course single cell differentiation
    Zhang, Mengrui
    Chen, Yongkai
    Yu, Dingyi
    Zhong, Wenxuan
    Zhang, Jingyi
    Ma, Ping
    ARTIFICIAL INTELLIGENCE IN THE LIFE SCIENCES, 2023, 3
  • [4] Single-cell analysis for bioprocessing
    Zhang, Hu
    Cui, Xiaolin
    Bi, Jingxiu
    Dai, Sheng
    Ye, Haitao
    ENGINEERING IN LIFE SCIENCES, 2015, 15 (06): : 582 - 592
  • [5] Deep learning applications in single-cell genomics and transcriptomics data analysis
    Erfanian, Nafiseh
    Heydari, A. Ali
    Feriz, Adib Miraki
    Ianez, Pablo
    Derakhshani, Afshin
    Ghasemigol, Mohammad
    Farahpour, Mohsen
    Razavi, Seyyed Mohammad
    Nasseri, Saeed
    Safarpour, Hossein
    Sahebkar, Amirhossein
    BIOMEDICINE & PHARMACOTHERAPY, 2023, 165
  • [6] ROC'n'Ribo: Characterizing a Riboswitching Expression System by Modeling Single-Cell Data
    Schneider, Christopher
    Bronstein, Leo
    Diemer, Jascha
    Koeppl, Heinz
    Suess, Beatrix
    ACS SYNTHETIC BIOLOGY, 2017, 6 (07): : 1211 - 1224
  • [7] Clustering and classification methods for single-cell RNA-sequencing data
    Qi, Ren
    Ma, Anjun
    Ma, Qin
    Zou, Quan
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) : 1196 - 1208
  • [8] Accounting for Errors in Data Improves Divergence Time Estimates in Single-cell Cancer Evolution
    Chen, Kylie
    Moravec, Jiri C.
    Gavryushkin, Alex
    Welch, David
    Drummond, Alexei J.
    MOLECULAR BIOLOGY AND EVOLUTION, 2022, 39 (08)
  • [9] Orchestrating single-cell analysis with Bioconductor
    Amezquita, Robert A.
    Lun, Aaron T. L.
    Becht, Etienne
    Carey, Vince J.
    Carpp, Lindsay N.
    Geistlinger, Ludwig
    Marini, Federico
    Rue-Albrecht, Kevin
    Risso, Davide
    Soneson, Charlotte
    Waldron, Levi
    Pages, Herve
    Smith, Mike L.
    Huber, Wolfgang
    Morgan, Martin
    Gottardo, Raphael
    Hicks, Stephanie C.
    NATURE METHODS, 2020, 17 (02) : 137 - 145
  • [10] Analyzing Time-Course Microarray Data Using Functional Data Analysis - A Review
    Coffey, Norma
    Hinde, John
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)