Precision-guaranteed quantum metrology

被引:8
|
作者
Sugiyama, Takanori [1 ]
机构
[1] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 04期
基金
瑞士国家科学基金会;
关键词
LIMIT;
D O I
10.1103/PhysRevA.91.042126
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum metrology is a general term for methods to precisely estimate the value of an unknown parameter by actively using quantum resources. In particular, some classes of entangled states can be used to significantly suppress the estimation error. Here we derive a formula for rigorously evaluating an upper bound for the estimation error in a general setting of quantum metrology with arbitrary finite data sets. Unlike in the standard approach, where lower bounds for the error are evaluated in an ideal setting with almost infinite data, our method rigorously guarantees the estimation precision in realistic settings with finite data. We also prove that our upper bound shows the Heisenberg limit scaling whenever the linearized uncertainty, which is a popular benchmark in the standard approach, shows it. As an example, we apply our result to a Ramsey interferometer, and numerically show that the upper bound can exhibit the quantum enhancement of precision for finite data.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Enhancing sensitivity in quantum metrology by Hamiltonian extensions
    Fraisse, Julien Mathieu Elias
    Braun, Daniel
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [42] Quantum Metrology with a Scanning Probe Atom Interferometer
    Ockeloen, Caspar F.
    Schmied, Roman
    Riedel, Max F.
    Treutlein, Philipp
    PHYSICAL REVIEW LETTERS, 2013, 111 (14)
  • [43] Building versatile bipartite probes for quantum metrology
    Farace, Alessandro
    De Pasquale, Antonella
    Adesso, Gerardo
    Giovannetti, Vittorio
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [44] Quantum metrology via repeated quantum nondemolition measurements in a photon box
    Zhang, Yu-Ran
    Yue, Jie-Dong
    Fan, Heng
    PHYSICAL REVIEW A, 2015, 91 (02):
  • [45] Intuitive reason for the usefulness of entanglement in quantum metrology
    Maccone, Lorenzo
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [46] Experimental critical quantum metrology with the Heisenberg scaling
    Liu, Ran
    Chen, Yu
    Jiang, Min
    Yang, Xiaodong
    Wu, Ze
    Li, Yuchen
    Yuan, Haidong
    Peng, Xinhua
    Du, Jiangfeng
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [47] A perspective on multiparameter quantum metrology: From theoretical tools to applications in quantum imaging
    Albarelli, F.
    Barbieri, M.
    Genoni, M. G.
    Gianani, I
    PHYSICS LETTERS A, 2020, 384 (12)
  • [48] Enhancing quantum metrology for multiple frequencies of oscillating magnetic fields by quantum control
    Lei, Xin
    Fan, Jingyi
    Pang, Shengshi
    CHINESE PHYSICS B, 2024, 33 (06)
  • [49] Quantum metrology with spin cat states under dissipation
    Huang, Jiahao
    Qin, Xizhou
    Zhong, Honghua
    Ke, Yongguan
    Lee, Chaohong
    SCIENTIFIC REPORTS, 2015, 5
  • [50] Quantum-enhanced metrology with large Fock states
    Deng, Xiaowei
    Li, Sai
    Chen, Zi-Jie
    Ni, Zhongchu
    Cai, Yanyan
    Mai, Jiasheng
    Zhang, Libo
    Zheng, Pan
    Yu, Haifeng
    Zou, Chang-Ling
    Liu, Song
    Yan, Fei
    Xu, Yuan
    Yu, Dapeng
    NATURE PHYSICS, 2024, 20 (12) : 1874 - 1880