Precision-guaranteed quantum metrology

被引:8
|
作者
Sugiyama, Takanori [1 ]
机构
[1] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 04期
基金
瑞士国家科学基金会;
关键词
LIMIT;
D O I
10.1103/PhysRevA.91.042126
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum metrology is a general term for methods to precisely estimate the value of an unknown parameter by actively using quantum resources. In particular, some classes of entangled states can be used to significantly suppress the estimation error. Here we derive a formula for rigorously evaluating an upper bound for the estimation error in a general setting of quantum metrology with arbitrary finite data sets. Unlike in the standard approach, where lower bounds for the error are evaluated in an ideal setting with almost infinite data, our method rigorously guarantees the estimation precision in realistic settings with finite data. We also prove that our upper bound shows the Heisenberg limit scaling whenever the linearized uncertainty, which is a popular benchmark in the standard approach, shows it. As an example, we apply our result to a Ramsey interferometer, and numerically show that the upper bound can exhibit the quantum enhancement of precision for finite data.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Quantum metrology with generalized cat states
    Tatsuta, Mamiko
    Matsuzaki, Yuichiro
    Shimizu, Akira
    PHYSICAL REVIEW A, 2019, 100 (03)
  • [22] Compressed quantum metrology for the Ising Hamiltonian
    Boyajian, W. L.
    Skotiniotis, M.
    Duer, W.
    Kraus, B.
    PHYSICAL REVIEW A, 2016, 94 (06)
  • [23] QUANTUM METROLOGY Beauty and the noisy beast
    Maccone, Lorenzo
    Giovannetti, Vittorio
    NATURE PHYSICS, 2011, 7 (05) : 376 - 377
  • [24] Matrix Product States for Quantum Metrology
    Jarzyna, Marcin
    Demkowicz-Dobrzanski, Rafal
    PHYSICAL REVIEW LETTERS, 2013, 110 (24)
  • [25] Quantum metrology with open dynamical systems
    Tsang, Mankei
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [26] Quantum metrology in local dissipative environments
    Wang, Yuan-Sheng
    Chen, Chong
    An, Jun-Hong
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [27] Quantum metrology with unitary parametrization processes
    Liu, Jing
    Jing, Xiao-Xing
    Wang, Xiaoguang
    SCIENTIFIC REPORTS, 2015, 5
  • [28] Sequential Path Entanglement for Quantum Metrology
    Jin, Xian-Min
    Peng, Cheng-Zhi
    Deng, Youjin
    Barbieri, Marco
    Nunn, Joshua
    Walmsley, Ian A.
    SCIENTIFIC REPORTS, 2013, 3
  • [29] The effects of symmetrical arrangement on quantum metrology
    Jin, Yao
    SCIENTIFIC REPORTS, 2017, 7
  • [30] Asymptotic role of entanglement in quantum metrology
    Augusiak, R.
    Kolodynski, J.
    Streltsov, A.
    Bera, M. N.
    Acin, A.
    Lewenstein, M.
    PHYSICAL REVIEW A, 2016, 94 (01)