Precision-guaranteed quantum metrology

被引:8
|
作者
Sugiyama, Takanori [1 ]
机构
[1] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 04期
基金
瑞士国家科学基金会;
关键词
LIMIT;
D O I
10.1103/PhysRevA.91.042126
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum metrology is a general term for methods to precisely estimate the value of an unknown parameter by actively using quantum resources. In particular, some classes of entangled states can be used to significantly suppress the estimation error. Here we derive a formula for rigorously evaluating an upper bound for the estimation error in a general setting of quantum metrology with arbitrary finite data sets. Unlike in the standard approach, where lower bounds for the error are evaluated in an ideal setting with almost infinite data, our method rigorously guarantees the estimation precision in realistic settings with finite data. We also prove that our upper bound shows the Heisenberg limit scaling whenever the linearized uncertainty, which is a popular benchmark in the standard approach, shows it. As an example, we apply our result to a Ramsey interferometer, and numerically show that the upper bound can exhibit the quantum enhancement of precision for finite data.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Retrieving Ideal Precision in Noisy Quantum Optical Metrology
    Bai, Kai
    Peng, Zhen
    Luo, Hong-Gang
    An, Jun-Hong
    PHYSICAL REVIEW LETTERS, 2019, 123 (04)
  • [2] Quantum metrology
    Xiang Guo-Yong
    Guo Guang-Can
    CHINESE PHYSICS B, 2013, 22 (11)
  • [3] Quantum metrology matrix
    Yuan, Haidong
    Fung, Chi-Hang Fred
    PHYSICAL REVIEW A, 2017, 96 (01)
  • [4] Quantum metrology with imperfect measurements
    Len, Yink Loong
    Gefen, Tuvia
    Retzker, Alex
    Kolodynski, Jan
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] Quantum metrology with molecular ensembles
    Schaffry, Marcus
    Gauger, Erik M.
    Morton, John J. L.
    Fitzsimons, Joseph
    Benjamin, Simon C.
    Lovett, Brendon W.
    PHYSICAL REVIEW A, 2010, 82 (04):
  • [6] Quantum-dense metrology
    Steinlechner, Sebastian
    Bauchrowitz, Joeran
    Meinders, Melanie
    Mueller-Ebhardt, Helge
    Danzmann, Karsten
    Schnabel, Roman
    NATURE PHOTONICS, 2013, 7 (08) : 626 - 629
  • [7] Compatibility in multiparameter quantum metrology
    Ragy, Sammy
    Jarzyna, Marcin
    Demkowicz-Dobrzanski, Rafal
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [8] Coherent measurements in quantum metrology
    Micadei, K.
    Rowlands, D. A.
    Pollock, F. A.
    Celeri, L. C.
    Serra, R. M.
    Modi, K.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [9] Optimal Scheme for Quantum Metrology
    Liu, Jing
    Zhang, Mao
    Chen, Hongzhen
    Wang, Lingna
    Yuan, Haidong
    ADVANCED QUANTUM TECHNOLOGIES, 2022, 5 (01)
  • [10] Quantum Error Correction for Metrology
    Kessler, E. M.
    Lovchinsky, I.
    Sushkov, A. O.
    Lukin, M. D.
    PHYSICAL REVIEW LETTERS, 2014, 112 (15)