Experimental device-independent certified randomness generation with an instrumental causal structure

被引:21
作者
Agresti, Iris [1 ]
Poderini, Davide [1 ]
Guerini, Leonardo [2 ]
Mancusi, Michele [1 ]
Carvacho, Gonzalo [1 ]
Aolita, Leandro [3 ]
Cavalcanti, Daniel [4 ]
Chaves, Rafael [5 ,6 ]
Sciarrino, Fabio [1 ]
机构
[1] Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] Univ Estadual Paulista, Int Ctr Theoret Phys, South Amer Inst Fundamental Res, Inst Fis Teor, R Dr Bento T Ferraz 271, BR-01140070 Sao Paulo, Brazil
[3] Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528, BR-21941972 Rio De Janeiro, RJ, Brazil
[4] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, E-08860 Barcelona, Spain
[5] Univ Fed Rio Grande do Norte, Int Inst Phys, POB 1613, BR-59078970 Natal, RN, Brazil
[6] Univ Fed Rio Grande do Norte, Sch Sci & Technol, BR-59078970 Natal, RN, Brazil
基金
巴西圣保罗研究基金会;
关键词
QUANTUM; VIOLATION;
D O I
10.1038/s42005-020-0375-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The intrinsic random nature of quantum physics offers novel tools for the generation of random numbers, a central challenge for a plethora of fields. Bell non-local correlations obtained by measurements on entangled states allow for the generation of bit strings whose randomness is guaranteed in a device-independent manner, i.e. without assumptions on the measurement and state-generation devices. Here, we generate this strong form of certified randomness on a new platform: the so-called instrumental scenario, which is central to the field of causal inference. First, we theoretically show that certified random bits, private against general quantum adversaries, can be extracted exploiting device-independent quantum instrumental-inequality violations. Then, we experimentally implement the corresponding randomness-generation protocol using entangled photons and active feed-forward of information. Moreover, we show that, for low levels of noise, our protocol offers an advantage over the simplest Bell-nonlocality protocol based on the Clauser-Horn-Shimony-Holt inequality. Random number generation has applications spanning several sectors, from scientific research to cryptography, with the intrinsic random nature of quantum physics allows to obtain truly random sequences. The authors present a proof-of principle implementation of a device-independent random number generator protocol, whose effectiveness is certified by quantum instrumental correlations, which also ensures privacy with respect to any quantum adversarial attack.
引用
收藏
页数:7
相关论文
共 58 条
[1]  
[Anonymous], 2001, BOOZ ALLEN HAMILTON
[2]   Practical device-independent quantum cryptography via entropy accumulation [J].
Arnon-Friedman, Rotem ;
Dupuis, Frederic ;
Fawzi, Omar ;
Renner, Renato ;
Vidick, Thomas .
NATURE COMMUNICATIONS, 2018, 9
[3]   Sum-of-squares decompositions for a family of Clauser-Horne-Shimony-Holt-like inequalities and their application to self-testing [J].
Bamps, Cedric ;
Pironio, Stefano .
PHYSICAL REVIEW A, 2015, 91 (05)
[4]   More randomness from the same data [J].
Bancal, Jean-Daniel ;
Sheridan, Lana ;
Scarani, Valerio .
NEW JOURNAL OF PHYSICS, 2014, 16
[5]  
Bell J. S., 1964, Physics, V1, P195, DOI 10.1103/PhysicsPhysiqueFizika.1.195
[6]   Experimentally generated randomness certified by the impossibility of superluminal signals [J].
Bierhorst, Peter ;
Knill, Emanuel ;
Glancy, Scott ;
Zhang, Yanbao ;
Mink, Alan ;
Jordan, Stephen ;
Rommal, Andrea ;
Liu, Yi-Kai ;
Christensen, Bradley ;
Nam, Sae Woo ;
Stevens, Martin J. ;
Shalm, Lynden K. .
NATURE, 2018, 556 (7700) :223-+
[7]  
Bonet B., 2001, P 17 C UNCERTAINTY A, P48, DOI DOI 10.5555/2074022.2074029
[8]   Self-testing of Pauli observables for device-independent entanglement certification [J].
Bowles, Joseph ;
Supic, Ivan ;
Cavalcanti, Daniel ;
Acin, Antonio .
PHYSICAL REVIEW A, 2018, 98 (04)
[9]   Realistic noise-tolerant randomness amplification using finite number of devices [J].
Brandao, Fernando G. S. L. ;
Ramanathan, Ravishankar ;
Grudka, Andrzej ;
Horodecki, Karol ;
Horodecki, Michal ;
Horodecki, Pawel ;
Szarek, Tomasz ;
Wojewodka, Hanna .
NATURE COMMUNICATIONS, 2016, 7
[10]   Bell's inequalities and quantum communication complexity [J].
Brukner, C ;
Zukowski, M ;
Pan, JW ;
Zeilinger, A .
PHYSICAL REVIEW LETTERS, 2004, 92 (12) :127901-1