Ensemble learning method for the prediction of new bioactive molecules

被引:25
作者
Afolabi, Lateefat Temitope [1 ]
Saeed, Faisal [2 ,3 ]
Hashim, Haslinda [3 ,4 ]
Petinrin, Olutomilayo Olayemi [3 ]
机构
[1] Al Hikmah Univ, Coll Nat Sci, Dept Phys Sci, Ilorin, Nigeria
[2] Taibah Univ, Coll Comp Sci & Engn, Medina, Saudi Arabia
[3] Univ Teknol Malaysia, Informat Syst Dept, Fac Comp, Skudai, Johor, Malaysia
[4] Kolej Yayasan Pelajaran Johor, KM16,Jalan Kulai Kota Tinggi, Kota Tinggi, Johor, Malaysia
关键词
SIMILARITY; KINASE; CLASSIFICATION; INHIBITORS; SELECTION; DOCKING; BINDING; SIZE;
D O I
10.1371/journal.pone.0189538
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pharmacologically active molecules can provide remedies for a range of different illnesses and infections. Therefore, the search for such bioactive molecules has been an enduring mission. As such, there is a need to employ a more suitable, reliable, and robust classification method for enhancing the prediction of the existence of new bioactive molecules. In this paper, we adopt a recently developed combination of different boosting methods (Adaboost) for the prediction of new bioactive molecules. We conducted the research experiments utilizing the widely used MDL Drug Data Report (MDDR) database. The proposed boosting method generated better results than other machine learning methods. This finding suggests that the method is suitable for inclusion among the in silico tools for use in cheminformatics, computational chemistry and molecular biology.
引用
收藏
页数:14
相关论文
共 53 条
[1]   Prediction of New Bioactive Molecules using a Bayesian Belief Network [J].
Abdo, Ammar ;
Leclere, Valerie ;
Jacques, Philippe ;
Salim, Naomie ;
Pupin, Maude .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2014, 54 (01) :30-36
[2]   Condorcet and borda count fusion method for ligand-based virtual screening [J].
Ahmed, Ali ;
Saeed, Faisal ;
Salim, Naomie ;
Abdo, Ammar .
JOURNAL OF CHEMINFORMATICS, 2014, 6
[3]  
[Anonymous], 2008, VIRTUAL SCREENING BI
[4]   Molecular similarity: a key technique in molecular informatics [J].
Bender, A ;
Glen, RC .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2004, 2 (22) :3204-3218
[5]   Molecular similarity searching using atom environments, information-based feature selection, and a naive Bayesian classifier [J].
Bender, A ;
Mussa, HY ;
Glen, RC ;
Reiling, S .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (01) :170-178
[6]  
Bologa Cristian G, 2012, Methods Mol Biol, V910, P125, DOI 10.1007/978-1-61779-965-5_7
[7]   Contemporary QSAR classifiers compared [J].
Bruce, Craig L. ;
Melville, James L. ;
Pickett, Stephen D. ;
Hirst, Jonathan D. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2007, 47 (01) :219-227
[8]   Predicting a small molecule-kinase interaction map: A machine learning approach [J].
Buchwald, Fabian ;
Richter, Lothar ;
Kramer, Stefan .
JOURNAL OF CHEMINFORMATICS, 2011, 3
[9]   New QSAR methods applied to structure-activity mapping and combinatorial chemistry [J].
Burden, FR ;
Winkler, DA .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1999, 39 (02) :236-242
[10]   Automatic feature subset selection for decision tree-based ensemble methods in the prediction of bioactivity [J].
Cao, Dong-Sheng ;
Xu, Qing-Song ;
Liang, Yi-Zeng ;
Chen, Xian ;
Li, Hong-Dong .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2010, 103 (02) :129-136