Origin, bifurcation structure and stability of localized states in Kerr dispersive optical cavities

被引:0
作者
Parra-Rivas, P. [1 ]
Knobloch, E. [2 ]
Gelens, L. [3 ]
Gomila, D. [4 ]
机构
[1] Univ Libre Bruxelles, OPERA Photon, 50 Ave FD Roosevelt,CP 194-5, B-1050 Brussels, Belgium
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Leuven, KU Leuven, Dept Cellular & Mol Med, Lab Dynam Biol Syst, B-3000 Leuven, Belgium
[4] IFISC CSIC UIB, Inst Fis Interdisciplinar & Sistemas Complejos, Campus Univ Illes Balears, E-07122 Palma De Mallorca, Spain
基金
美国国家科学基金会;
关键词
bifurcation structure; homoclinic snaking; collapsed snaking; non-linear optics; GINZBURG-LANDAU EQUATION; FREQUENCY COMBS; HOMOCLINIC SNAKING; SOLITONS; PATTERNS; INSTABILITIES; TRANSITION; RESONATOR; LADDERS; SNAKES;
D O I
10.1093/imamat/hxab031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Localized coherent structures can form in externally driven dispersive optical cavities with a Kerr-type non-linearity. Such systems are described by the Lugiato-Lefever (LL) equation, which supports a large variety of dynamical states. Here, we review our current knowledge of the formation, stability and bifurcation structure of localized structures in the one-dimensional LL equation. We do so by focusing on two main regimes of operation: anomalous and normal second-order dispersion. In the anomalous regime, localized patterns are organized in a homoclinic snaking scenario, which is eventually destroyed, leading to a foliated snaking bifurcation structure. In the normal regime, localized structures undergo a different type of bifurcation structure, known as collapsed snaking. The effects of third-order dispersion and various dynamical regimes are also described.
引用
收藏
页码:856 / 895
页数:40
相关论文
共 129 条
[1]  
Akhmediev N. N., 2008, Dissipative Solitons: From Optics to Biology and Medicine
[2]  
Allgower E.L., 1990, Numerical continuation methods, V13
[3]  
Anderson M.H., 2020, ARXIV200714507
[4]   Observations of spatiotemporal instabilities of temporal cavity solitons [J].
Anderson, Miles ;
Leo, Francois ;
Coen, Stephane ;
Erkintalo, Miro ;
Murdoch, Stuart G. .
OPTICA, 2016, 3 (10) :1071-1074
[5]   Temporal localized structures in photonic crystal fibre resonators and their spontaneous symmetry-breaking instability [J].
Bahloul, L. ;
Cherbi, L. ;
Hariz, A. ;
Tlidi, M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2027)
[6]   Observation of Breathing Dark Pulses in Normal Dispersion Optical Microresonators [J].
Bao, Chengying ;
Xuan, Yi ;
Wang, Cong ;
Fulop, Attila ;
Leaird, Daniel E. ;
Torres-Company, Victor ;
Qi, Minghao ;
Weiner, Andrew M. .
PHYSICAL REVIEW LETTERS, 2018, 121 (25)
[7]   Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons [J].
Barashenkov, IV ;
Smirnov, YS .
PHYSICAL REVIEW E, 1996, 54 (05) :5707-5725
[8]   Three-dimensional doubly diffusive convectons: instability and transition to complex dynamics [J].
Beaume, Cedric ;
Bergeon, Alain ;
Knobloch, Edgar .
JOURNAL OF FLUID MECHANICS, 2018, 840 :74-105
[9]   SNAKES, LADDERS, AND ISOLAS OF LOCALIZED PATTERNS [J].
Beck, Margaret ;
Knobloch, Juergen ;
Lloyd, David J. B. ;
Sandstede, Bjoern ;
Wagenknecht, Thomas .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) :936-972
[10]  
Buffoni B., 1996, J DYN DIFFER EQU, V8, P221