Co-expression of an alcohol dehydrogenase and a cyclohexanone monooxygenase for cascade reactions facilitates the regeneration of the NADPH cofactor

被引:44
作者
Kohl, Anna [1 ]
Srinivasamurthy, Vishnu [1 ]
Boettcher, Dominique [1 ]
Kabisch, Johannes [2 ]
Bornscheuer, Uwe T. [1 ]
机构
[1] Greifswald Univ, Inst Biochem, Dept Biotechnol & Enzyme Catalysis, Felix Hausdorff Str 4, D-17489 Greifswald, Germany
[2] Tech Univ Darmstadt, Dept Biol, Comp Aided Synthet Biol, Schnittspahnstr 10, D-64287 Darmstadt, Germany
关键词
Cyclohexanone monooxygenase; Co-expression; Ribosome binding site; Protein engineering; Whole-cell biocatalysis; BAEYER-VILLIGER-MONOOXYGENASES; RECOMBINANT PROTEIN EXPRESSION; ESCHERICHIA-COLI; EPSILON-CAPROLACTONE; TRANSFORMATION; CLONING; DESIGN;
D O I
10.1016/j.enzmictec.2017.09.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The introduction of a three-enzyme cascade (comprising a cyclohexanone monooxygenase (CHMO), an alcohol dehydrogenase (ADH) and a lipase (CAL-A)) for the production of oligo-epsilon-caprolactone provided self-sufficiency with respect to NADPH-cofactor regeneration and reduced inhibiting effects on the central CHMO enzyme. For further optimization of cofactor regeneration, now a co-expression of CHMO and ADH in E. coli using a Duet (TM) vector was performed. This led to higher conversion values of the substrate cyclohexanol in whole-cell biocatalysis compared to an expression of both enzymes from two separate plasmids. Furthermore, a more advantageous balance of expression levels between the partial cascade enzymes was achieved via engineering of the ribosome binding site. This contributed to an even faster cofactor regeneration rate.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 29 条
  • [21] An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers
    Schmidt, Sandy
    Scherkus, Christian
    Muschiol, Jan
    Menyes, Ulf
    Winkler, Till
    Hummel, Werner
    Groeger, Harald
    Liese, Andreas
    Herz, Hans-Georg
    Bornscheuer, Uwe T.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (09) : 2784 - 2787
  • [22] Mechanistic studies of cyclohexanone monooxygenase: Chemical properties of intermediates involved in catalysis
    Sheng, DW
    Ballou, DP
    Massey, V
    [J]. BIOCHEMISTRY, 2001, 40 (37) : 11156 - 11167
  • [23] Novel approach of high cell density recombinant bioprocess development: Optimisation and scale-up from microlitre to pilot scales while maintaining the fed-batch cultivation mode of E. coli cultures
    Siurkus, Juozas
    Panula-Perala, Johanna
    Horn, Uwe
    Kraft, Mario
    Rimseliene, Renata
    Neubauer, Peter
    [J]. MICROBIAL CELL FACTORIES, 2010, 9
  • [24] Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ε-caprolactone
    Staudt, Svenja
    Bornscheuer, Uwe T.
    Menyes, Ulf
    Hummel, Werner
    Groeger, Harald
    [J]. ENZYME AND MICROBIAL TECHNOLOGY, 2013, 53 (04) : 288 - 292
  • [25] ENZYMIC BAEYER-VILLIGER OXIDATIONS BY FLAVIN-DEPENDENT MONOOXYGENASES
    WALSH, CT
    CHEN, YCJ
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1988, 27 (03): : 333 - 343
  • [26] Cloning, expression, and characterization of an (R)-specific alcohol dehydrogenase from Lactobacillus kefir
    Weckbecker, Andrea
    Hummel, Werner
    [J]. BIOCATALYSIS AND BIOTRANSFORMATION, 2006, 24 (05) : 380 - 389
  • [27] Structural studies and synthetic applications of Baeyer-Villiger monooxygenases
    Willetts, A
    [J]. TRENDS IN BIOTECHNOLOGY, 1997, 15 (02) : 55 - 62
  • [28] The return of a forgotten polymer-Polycaprolactone in the 21st century
    Woodruff, Maria Ann
    Hutmacher, Dietmar Werner
    [J]. PROGRESS IN POLYMER SCIENCE, 2010, 35 (10) : 1217 - 1256
  • [29] ePathBrick: A Synthetic Biology Platform for Engineering Metabolic Pathways in E-coli
    Xu, Peng
    Vansiri, Amerin
    Bhan, Namita
    Koffas, Mattheos A. G.
    [J]. ACS SYNTHETIC BIOLOGY, 2012, 1 (07): : 256 - 266