Technical strategies to reduce the amount of "false significant" results in quantitative proteomics

被引:11
作者
Fuxius, Sandra [1 ,2 ]
Eravci, Murat [1 ,2 ]
Broedel, Oliver [2 ]
Weist, Stephanie [2 ]
Mansmann, Ulrich [3 ]
Eravci, Selda [2 ]
Baumgartner, Andreas [1 ,2 ]
机构
[1] Charite Univ Med Berlin, Dept Radiol & Nucl Med Radiochem, D-12200 Berlin, Germany
[2] A M Proteome Sci, Berlin, Germany
[3] Univ Munich, Dept Med Informat Biometry & Epidemiol, Berlin, Germany
关键词
false significant; gel caster; normalization; quantitative proteomics; two dimensional gel electrophoresis;
D O I
10.1002/pmic.200701074
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
When the p-value is set at <0.05 in statistical group comparisons, a 5% rate of "false significant" results is expected. In order to test the reliability of our 2-DE method, we loaded each of 24 gels with equal-sized samples (200 mu g protein from pooled rat brain, pH 4-7, stained with ruthenium fluorescent stain for visualization) and statistically compared the first 12 gels with the last 12. In numerous experiments the rate of significant differences found far exceeded 5%. Several factors were identified as causing the following rates of false significant differences in spot intensities: (i) running samples in two different 2-DE runs (42%), (ii) running second dimension gels produced in two different gel casters (16%), (iii) normalizing the entire gel instead of separately normalizing several different gel zones (11%), (iv) using IPG strips from different packages (19%), (v) dividing the whole sample into subgroups during software analysis (9%). After controlling for all these factors, the rates of "false positive" results in our experiments were regularly reduced to approximately 5%. This is an indispensable prerequisite for avoiding too high a rate of false positive results in experiments in which different subgroups are compared statistically.
引用
收藏
页码:1780 / 1784
页数:5
相关论文
共 9 条
[1]   Improved comparative proteome analysis based on two-dimensional gel electrophoresis [J].
Eravci, Murat ;
Fuxius, Sandra ;
Broedel, Oliver ;
Weist, Stephanie ;
Eravci, Selda ;
Mansmann, Ulrich ;
Schluter, Hartmut ;
Tiemann, Joachim ;
Baumgartner, Andreas .
PROTEOMICS, 2007, 7 (04) :513-523
[2]  
Görg A, 2000, ELECTROPHORESIS, V21, P1037, DOI 10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO
[3]  
2-V
[4]  
Karp Natasha A, 2007, Proteomics, V7 Suppl 1, P42, DOI 10.1002/pmic.200700683
[5]   Experimental and statistical considerations to avoid false conclusions in proteomics studies using differential in-gel electrophoresis [J].
Karp, Natasha A. ;
McCormick, Paul S. ;
Russell, Matthew R. ;
Lilley, Kathryn S. .
MOLECULAR & CELLULAR PROTEOMICS, 2007, 6 (08) :1354-1364
[6]   Quintessence from proteomics networks - the HUPO Brain Proteome Project Pilot Studies [J].
Meyer, Helmut E. ;
Hamacher, Michael .
PROTEOMICS, 2006, 6 (18) :4887-+
[7]   The minimum information about a proteomics experiment (MIAPE) [J].
Taylor, Chris F. ;
Paton, Norman W. ;
Lilley, Kathryn S. ;
Binz, Pierre-Alain ;
Julian, Randall K., Jr. ;
Jones, Andrew R. ;
Zhu, Weimin ;
Apweiler, Rolf ;
Aebersold, Ruedi ;
Deutsch, Eric W. ;
Dunn, Michael J. ;
Heck, Albert J. R. ;
Leitner, Alexander ;
Macht, Marcus ;
Mann, Matthias ;
Martens, Lennart ;
Neubert, Thomas A. ;
Patterson, Scott D. ;
Ping, Peipei ;
Seymour, Sean L. ;
Souda, Puneet ;
Tsugita, Akira ;
Vandekerckhove, Joel ;
Vondriska, Thomas M. ;
Whitelegge, Julian P. ;
Wilkins, Marc R. ;
Xenarios, Ioannnis ;
Yates, John R., III ;
Hermjakob, Henning .
NATURE BIOTECHNOLOGY, 2007, 25 (08) :887-893
[8]   The Association of Biomolecular Resource Facilities Proteomics Research Group 2006 Study - Relative protein quantitation [J].
Turck, Christoph W. ;
Falick, Arnold M. ;
Kowalak, Jeffrey A. ;
Lane, William S. ;
Lilley, Kathryn S. ;
Phinney, Brett S. ;
Weintraub, Susan T. ;
Witkowska, H. Ewa ;
Yates, Nathan A. .
MOLECULAR & CELLULAR PROTEOMICS, 2007, 6 (08) :1291-1298
[9]  
Wainer H., 1976, J ED STAT, V1, P285, DOI DOI 10.2307/1164985