BSDEs with stochastic Lipschitz condition and quadratic PDEs in Hilbert spaces

被引:61
作者
Briand, Philippe [2 ]
Confortola, Fulvia [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat, I-20125 Milan, Italy
[2] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
BMO martingales; backward stochastic differential equations; Kolmogorov equations;
D O I
10.1016/j.spa.2007.06.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is devoted to real valued backward stochastic differential equations (BSDEs for short) with generators which satisfy a stochastic Lipschitz condition involving BMO martingales. This framework arises naturally when looking at the BSDE satisfied by the gradient of the solution to a BSDE with quadratic growth in Z. We first prove an existence and uniqueness result from which we deduce the differentiability with respect to parameters of solutions to quadratic BSDEs. Finally, we apply these results to prove the existence and uniqueness of a mild solution to a parabolic partial differential equation in Hilbert space with nonlinearity having quadratic growth in the gradient of the solution. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:818 / 838
页数:21
相关论文
共 25 条
[1]  
ANKIRCHNER S, ARXIVMATH0701875
[2]   Lp solutions of backward stochastic differential equations [J].
Briand, P ;
Delyon, B ;
Hu, Y ;
Pardoux, E ;
Stoica, L .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 108 (01) :109-129
[3]   Differentiability of backward stochastic differential equations in Hilbert spaces with monotone generators [J].
Briand, Philippe ;
Confortola, Fulvia .
APPLIED MATHEMATICS AND OPTIMIZATION, 2008, 57 (02) :149-176
[4]   BSDE with quadratic growth and unbounded terminal value [J].
Briand, Philippe ;
Hu, Ying .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (04) :604-618
[5]  
CHEN Q, 2006, LP SOLUTIONS BSDES S
[6]  
DAPRATO G, 1992, ENCY MATH ITS APPL, V44
[7]  
El Karoui N., 1997, Pitman Res. Notes Math. Ser., V364, P27
[8]  
ELKAROUI N, 1997, MATH FINANC, V7, P71
[9]  
ELKAROUI N, 1997, PITMAN RES NOTES MAT, V364, P7
[10]  
Fuhrman M, 2004, ANN PROBAB, V32, P607