An Approach to Knowledge Base Completion by a Committee-Based Knowledge Graph Embedding

被引:6
|
作者
Choi, Su Jeong [1 ]
Song, Hyun-Je [2 ]
Park, Seong-Bae [3 ]
机构
[1] KT, Inst Convergence Technol, 151 Taebong Ro, Seoul 06763, South Korea
[2] Jeonbuk Natl Univ, Dept Informat Technol, 567 Baekje Daero, Jeonju Si 54896, Jeollabuk Do, South Korea
[3] Kyung Hee Univ, Dept Comp Sci & Engn, 1732 Deogyeong Daero, Yongin 17104, Gyeonggi Do, South Korea
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 08期
基金
新加坡国家研究基金会;
关键词
knowledge base completion; knowledge graph construction; knowledge graph embedding; committee machine;
D O I
10.3390/app10082651
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Knowledge bases such as Freebase, YAGO, DBPedia, and Nell contain a number of facts with various entities and relations. Since they store many facts, they are regarded as core resources for many natural language processing tasks. Nevertheless, they are not normally complete and have many missing facts. Such missing facts keep them from being used in diverse applications in spite of their usefulness. Therefore, it is significant to complete knowledge bases. Knowledge graph embedding is one of the promising approaches to completing a knowledge base and thus many variants of knowledge graph embedding have been proposed. It maps all entities and relations in knowledge base onto a low dimensional vector space. Then, candidate facts that are plausible in the space are determined as missing facts. However, any single knowledge graph embedding is insufficient to complete a knowledge base. As a solution to this problem, this paper defines knowledge base completion as a ranking task and proposes a committee-based knowledge graph embedding model for improving the performance of knowledge base completion. Since each knowledge graph embedding has its own idiosyncrasy, we make up a committee of various knowledge graph embeddings to reflect various perspectives. After ranking all candidate facts according to their plausibility computed by the committee, the top-k facts are chosen as missing facts. Our experimental results on two data sets show that the proposed model achieves higher performance than any single knowledge graph embedding and shows robust performances regardless of k. These results prove that the proposed model considers various perspectives in measuring the plausibility of candidate facts.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Knowledge graph embedding with concepts
    Guan, Niannian
    Song, Dandan
    Liao, Lejian
    KNOWLEDGE-BASED SYSTEMS, 2019, 164 : 38 - 44
  • [32] Embedding and Predicting Software Security Entity Relationships: A Knowledge Graph Based Approach
    Xiao, Hongbo
    Xing, Zhenchang
    Li, Xiaohong
    Guo, Hao
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT III, 2019, 11955 : 50 - 63
  • [33] Knowledge Graph Embedding: A Locally and Temporally Adaptive Translation-Based Approach
    Jia, Yantao
    Wang, Yuanzhuo
    Jin, Xiaolong
    Lin, Hailun
    Cheng, Xueqi
    ACM TRANSACTIONS ON THE WEB, 2018, 12 (02)
  • [34] Bootstrapped Knowledge Graph Embedding based on Neighbor Expansion
    Kim, Jun Seon
    Ahn, Seong Jin
    Kim, Myoung Ho
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4123 - 4127
  • [35] Generalized Translation-Based Embedding of Knowledge Graph
    Ebisu, Takuma
    Ichise, Ryutaro
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (05) : 941 - 951
  • [36] Deep Interest Network Based on Knowledge Graph Embedding
    Zhang, Dehai
    Wang, Haoxing
    Yang, Xiaobo
    Ma, Yu
    Liang, Jiashu
    Ren, Anquan
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [37] Triple Context-Based Knowledge Graph Embedding
    Gao, Huan
    Shi, Jun
    Qi, Guilin
    Wang, Meng
    IEEE ACCESS, 2018, 6 : 58978 - 58989
  • [38] Course recommendation model based on Knowledge Graph Embedding
    Chetoui, Ismail
    El Bachari, Essaid
    El Adnani, Mohamed
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 510 - 514
  • [39] Drug repositioning model based on knowledge graph embedding
    He, Shufang
    Zhao, Xiaoyu
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [40] A Knowledge Graph Embedding Approach for Polypharmacy Side Effects Prediction
    Kim, Jinwoo
    Shin, Miyoung
    APPLIED SCIENCES-BASEL, 2023, 13 (05):