Possibility of Deep Learning in Medical Imaging Focusing Improvement of Computed Tomography Image Quality

被引:39
作者
Nakamura, Yuko [1 ]
Higaki, Toru [1 ]
Tatsugami, Fuminari [1 ]
Honda, Yukiko [1 ]
Narita, Keigo [1 ]
Akagi, Motonori [1 ]
Awai, Kazuo [1 ]
机构
[1] Hiroshima Univ, Diagnost Radiol, Hiroshima, Japan
关键词
neural networks (computer); tomography; x-ray computed; machine learning; artificial intelligence; deep learning; CONVOLUTIONAL NEURAL-NETWORK; LOW TUBE VOLTAGE; ITERATIVE RECONSTRUCTION; ABDOMINAL CT; REDUCTION; ALGORITHM;
D O I
10.1097/RCT.0000000000000928
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Deep learning (DL), part of a broader family of machine learning methods, is based on learning data representations rather than task-specific algorithms. Deep learning can be used to improve the image quality of clinical scans with image noise reduction. We review the ability of DL to reduce the image noise, present the advantages and disadvantages of computed tomography image reconstruction, and examine the potential value of new DL-based computed tomography image reconstruction.
引用
收藏
页码:161 / 167
页数:7
相关论文
共 44 条
[1]   Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT [J].
Akagi, Motonori ;
Nakamura, Yuko ;
Higaki, Toru ;
Narita, Keigo ;
Honda, Yukiko ;
Zhou, Jian ;
Yu, Zhou ;
Akino, Naruomi ;
Awai, Kazuo .
EUROPEAN RADIOLOGY, 2019, 29 (11) :6163-6171
[2]   Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions [J].
Akkus, Zeynettin ;
Galimzianova, Alfiia ;
Hoogi, Assaf ;
Rubin, Daniel L. ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :449-459
[3]   Transfer learning from RF to B-mode temporal enhanced ultrasound features for prostate cancer detection [J].
Azizi, Shekoofeh ;
Mousavi, Parvin ;
Yan, Pingkun ;
Tahmasebi, Amir ;
Kwak, Jin Tae ;
Xu, Sheng ;
Turkbey, Baris ;
Choyke, Peter ;
Pinto, Peter ;
Wood, Bradford ;
Abolmaesumi, Purang .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2017, 12 (07) :1111-1121
[4]   Deep Learning: A Primer for Radiologists [J].
Chartrand, Gabriel ;
Cheng, Phillip M. ;
Vorontsov, Eugene ;
Drozdzal, Michal ;
Turcotte, Simon ;
Pal, Christopher J. ;
Kadoury, Samuel ;
Tang, An .
RADIOGRAPHICS, 2017, 37 (07) :2113-2131
[5]   Low-dose CT via convolutional neural network [J].
Chen, Hu ;
Zhang, Yi ;
Zhang, Weihua ;
Liao, Peixi ;
Li, Ke ;
Zhou, Jiliu ;
Wang, Ge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :679-694
[6]   Discriminative Prior - Prior Image Constrained Compressed Sensing Reconstruction for Low-Dose CT Imaging [J].
Chen, Yang ;
Liu, Jin ;
Xie, Lizhe ;
Hu, Yining ;
Shu, Huazhong ;
Luo, Limin ;
Zhang, Libo ;
Gui, Zhiguo ;
Coatrieux, Gouenou .
SCIENTIFIC REPORTS, 2017, 7
[7]   Lip Reading Sentences in the Wild [J].
Chung, Joon Son ;
Senior, Andrew ;
Vinyals, Oriol ;
Zisserman, Andrew .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :3444-3450
[8]   Stacked competitive networks for noise reduction in low-dose CT [J].
Du, Wenchao ;
Chen, Hu ;
Wu, Zhihong ;
Sun, Huaiqiang ;
Liao, Peixi ;
Zhang, Yi .
PLOS ONE, 2017, 12 (12)
[9]  
Euler A, 2017, EUR RADIOL, V27, P5252, DOI 10.1007/s00330-017-4825-9
[10]   NEOCOGNITRON - A NEW ALGORITHM FOR PATTERN-RECOGNITION TOLERANT OF DEFORMATIONS AND SHIFTS IN POSITION [J].
FUKUSHIMA, K ;
MIYAKE, S .
PATTERN RECOGNITION, 1982, 15 (06) :455-469