Increasing the carbon capture efficiency of the Ca/Cu looping process for power production with advanced process schemes

被引:27
作者
Martini, M. [1 ]
Martinez, I. [2 ]
Romano, M. C. [2 ]
Chiesa, P. [2 ]
Gallucci, F. [1 ]
Annaland, M. van Sint [1 ]
机构
[1] Eindhoven Univ Technol, Chem Proc Intensificat Chem Engn & Chem, Eindhoven, Netherlands
[2] Politecn Milan, Dept Energy, Milan, Italy
关键词
Hydrogen; Sorption enhanced reforming; Chemical looping; CO2; capture; Modelling; CO2; CAPTURE; HYDROGEN-PRODUCTION; NATURAL-GAS; H-2; PRODUCTION; TECHNOECONOMIC ASSESSMENT; DESIGN SIMULATION; BED REACTORS; PACKED-BEDS; CA; KINETICS;
D O I
10.1016/j.cej.2017.07.048
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Ca-Cu process is a novel concept for hydrogen production with inherent CO2 capture that has received great attention in the last years as potential low-CO2 emission technology for power generation and hydrogen production from natural gas. The process is based on the reforming of natural gas in the presence of a CaO-based sorbent and a Cu/CuO chemical looping combustion loop that provides the energy needed for CaCO3 calcination. The process is proposed to be carried out in adiabatic, dynamically operated fixed bed reactors operating in parallel. Simulations with a 1D dynamic pseudo-homogeneous reactor model were performed for the different stages of the Ca-Cu process, considering a reasonable set of process assumptions. It has been demonstrated that the formation of a high temperature plateau during the sorption-enhanced reforming stage of the process, caused by the decoupling between the steam methane reforming and the carbonation reactions in different positions along the bed, decreases the carbon capture efficiency that can be achieved in this process. Concretely, a maximum overall carbon capture efficiency of almost 82% could be obtained with selected operating conditions in the Ca-Cu process. With the aim of overcoming this limited capture efficiency, a novel alternative scheme for the Ca-Cu process has been proposed, consisting in splitting the sorption enhanced reforming stage into two steps with intercooling. Simulations of this case demonstrated that an overall carbon capture efficiency of 88% can be achieved. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:304 / 319
页数:16
相关论文
共 47 条
[41]   INTRINSIC KINETICS AND DESIGN SIMULATION IN A COMPLEX-REACTION NETWORK - STEAM-METHANE REFORMING [J].
NUMAGUCHI, T ;
KIKUCHI, K .
CHEMICAL ENGINEERING SCIENCE, 1988, 43 (08) :2295-2301
[42]   Process design simulation of H2 production by sorption enhanced steam methane reforming:: evaluation of potential CO2 acceptors [J].
Ochoa-Fernandez, Esther ;
Haugen, Geir ;
Zhao, Tiejun ;
Ronning, Magnus ;
Aartun, Ingrid ;
Borresen, Borre ;
Rytter, Erling ;
Ronnekleiv, Morten ;
Chen, De .
GREEN CHEMISTRY, 2007, 9 (06) :654-662
[43]   Pre-combustion CO2 capture from natural gas power plants, with ATR and MDEA processes [J].
Romano, Matteo C. ;
Chiesa, Paolo ;
Lozza, Giovanni .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2010, 4 (05) :785-797
[44]   Hydrogen and synthesis gas by steam- and CO2 reforming [J].
Rostrup-Nielsen, JR ;
Sehested, J ;
Norskov, JK .
ADVANCES IN CATALYSIS, VOL 47, 2002, 47 :65-139
[45]   Chemical looping reforming in packed-bed reactors: Modelling, experimental validation and large-scale reactor design [J].
Spallina, V. ;
Marinello, B. ;
Gallucci, F. ;
Romano, M. C. ;
Annaland, M. Van Sint .
FUEL PROCESSING TECHNOLOGY, 2017, 156 :156-170
[46]   Techno-economic assessment of membrane assisted fluidized bed reactors for pure H2 production with CO2 capture [J].
Spallina, V. ;
Pandolfo, D. ;
Battistella, A. ;
Romano, M. C. ;
Annaland, M. Van Sint ;
Gallucci, F. .
ENERGY CONVERSION AND MANAGEMENT, 2016, 120 :257-273
[47]  
VORTMEYER D, 1982, AICHE J, V28, P508, DOI 10.1002/aic.690280321