Triple pendulum model involving fractional derivatives with different kernels

被引:56
作者
Coronel-Escamilla, A. [1 ]
Gomez-Aguilar, J. F. [2 ]
Lopez-Lopez, M. G. [1 ]
Alvarado-Martinez, V. M. [1 ]
Guerrero-Ramirez, G. V. [1 ]
机构
[1] Tecnol Nacl Mexico, Ctr Nacl Invest & Desarrollo Tecnol, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[2] Tecnol Nacl Mexico, CONACYT Ctr Nacl Invest & Desarrollo Tecnol, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
Fractional dynamics; Riemann-Liouville derivative; Liouville-Caputo derivative; Caputo-Fabrizio derivative; Atangana-Baleanu derivative; Adams-Bashforth-Moulton method; Lagrangian dynamics; Hamilton equations; EULER-LAGRANGE EQUATIONS; HAMILTON FORMALISM; CALCULUS;
D O I
10.1016/j.chaos.2016.06.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to study the non-local dynamic behavior of triple pendulum-type systems. We use the Euler-Lagrange and the Hamiltonian formalisms to obtain the dynamic models, based on the Riemann-Liouville, Liouville-Caputo, Caputo-Fabrizio and Atangana-Baleanu-Caputo fractional derivative definitions. In these representations, an auxiliary parameter sigma is introduced, to define the equations in a fractal temporal geometry, which provides an entire new family of solutions for the dynamic behavior of the pendulum-type systems. The phase diagrams allow to visualize the effect of considering the fractional order approach, the classical behavior is recovered when the order of the fractional derivative is 1. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:248 / 261
页数:14
相关论文
共 53 条
[1]  
Anli Elmas, 2010, Engineering, V2, P935, DOI 10.4236/eng.2010.212118
[2]  
[Anonymous], 2004, NONLINEAR DYNAMICS
[3]  
[Anonymous], 2012, Series on Complexity, Nonlinearity and Chaos, DOI 10.1142/10044
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]  
Atangana A, 2016, CHAOS SOLIT FRACTALS
[6]   Caputo-Fabrizio Derivative Applied to Groundwater Flow within Confined Aquifer [J].
Atangana, Abdon ;
Baleanu, Dumitru .
JOURNAL OF ENGINEERING MECHANICS, 2017, 143 (05)
[7]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[9]   Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel [J].
Atangana, Abdon ;
Jose Nieto, Juan .
ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (10) :1-7
[10]   Analysis of the Keller-Segel Model with a Fractional Derivative without Singular Kernel [J].
Atangana, Abdon ;
Alkahtani, Badr Saad T. .
ENTROPY, 2015, 17 (06) :4439-4453