Decompositions of a matrix by means of its dual matrices with applications

被引:3
作者
Kim, Ik-Pyo [1 ]
Kraeuter, Arnold R. [2 ]
机构
[1] Daegu Univ, Dept Math Educ, Gyeongbuk 88453, South Korea
[2] Univ Leoben, Lehrstuhl Math & Stat, Dept Math & Informat Technol, Franz Josef Str 18, A-8700 Leoben, Austria
关键词
Dual sequence; Dual matrix; Vandermonde matrix; Hankel matrix; Toeplitz matrix; Lagrange interpolation polynomial; PASCAL MATRICES;
D O I
10.1016/j.laa.2017.09.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of dual matrices of an infinite matrix A, which are defined by the dual sequences of the rows of A and naturally connected to the Pascal matrix P = [((i)(j)) (i, j = 0, 1, 2, . . .). We present the Cholesky decomposition of the symmetric Pascal matrix by means of its dual matrix. Decompositions of a Vandermonde matrix are used to obtain variants of the Lagrange interpolation polynomial of degree <= n that passes through the n + 1 points (i, q(i)) for i = 0, 1, . . . , n. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:100 / 117
页数:18
相关论文
共 12 条
[1]  
[Anonymous], 2013, Matrix Analysis
[2]  
[Anonymous], 2010, Fundamentals of Matrix Computations
[3]  
[Anonymous], 2004, INTRO COMBINATORICS
[4]  
[Anonymous], 2013, APPROXIMATION THEORY
[5]   PASCAL MATRICES [J].
CALL, GS ;
VELLEMAN, DJ .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (04) :372-376
[6]  
Comtet L., 1974, Advanced combinatorics
[7]  
Corless RM., 2013, GRADUATE INTRO NUMER
[8]   Pascal matrices [J].
Edelman, A ;
Strang, G .
AMERICAN MATHEMATICAL MONTHLY, 2004, 111 (03) :189-197
[9]   On a connection between the Pascal, Vandermonde and Stirling matrices - I [J].
El-Mikkawy, M .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (01) :23-32
[10]  
Riordan J., 1968, Combinatorial Identities