RIEMANN PROBLEM FOR A NON-STRICTLY HYPERBOLIC SYSTEM IN CHEMOTAXIS

被引:2
作者
Li, Tong [1 ]
Mathur, Nitesh [1 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年 / 27卷 / 04期
关键词
Riemann problem; non-strictly hyperbolic; mixed-type; chemotaxis; 2 x 2 system of conservation laws; CONSERVATION-LAWS; NONLINEAR STABILITY; TRAVELING-WAVES; BOUNDARY-LAYERS; PARABOLIC SYSTEM; DIFFUSION LIMIT; GLOBAL DYNAMICS; MODEL;
D O I
10.3934/dcdsb.2021128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Riemann problem is solved for a system arising in chemotaxis. The system is of mixed-type and transitions from a hyperbolic to an elliptic region. It is genuinely nonlinear in the u-v plane except on the v-axis, where it is linearly degenerate. We have solved the Riemann problem in the physically relevant region up to the boundary of the hyperbolic-elliptic region, which is non-strictly hyperbolic. We also solved the problem on the linearly degenerate region. While solving the Riemann problem, we found classical shock and rarefaction waves in the hyperbolic region and contact discontinuities in the linearly degenerate region.
引用
收藏
页码:2173 / 2187
页数:15
相关论文
共 41 条
[1]   Boundary spike-layer solutions of the singular Keller-Segel system: existence and stability [J].
Carrillo, Jose A. ;
Li, Jingyu ;
Wang, Zhi-An .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 122 (01) :42-68
[2]  
de la Cruz R, 2020, ACTA APPL MATH, V170, P631, DOI 10.1007/s10440-020-00350-w
[3]   Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis [J].
Fan, Jishan ;
Zhao, Kun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) :687-695
[4]   Mathematical analysis of a model or the initiation of angiogenesis [J].
Fontelos, MA ;
Friedman, A ;
Hu, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (06) :1330-1355
[5]   The Riemann problem for a class of resonant hyperbolic systems of balance laws [J].
Goatin, P ;
LeFloch, PG .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (06) :881-902
[6]  
Guo J, 2009, ACTA MATH SCI, V29, P629
[7]   ON THE RIEMANN PROBLEM FOR A PROTOTYPE OF A MIXED TYPE CONSERVATION LAW [J].
HOLDEN, H .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (02) :229-264
[8]  
Horstmann D., 2003, Jahresber. Dtsch. Math.-Ver, V105, P103
[9]   Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane [J].
Hou, Qianqian ;
Wang, Zhian .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 130 :251-287
[10]   STABILITY OF BOUNDARY LAYERS FOR A VISCOUS HYPERBOLIC SYSTEM ARISING FROM CHEMOTAXIS: ONE-DIMENSIONAL CASE [J].
Hou, Qianqian ;
Liu, Cheng-Jie ;
Wang, Ya-Guang ;
Wang, Zhian .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (03) :3058-3091