In an inhomogeneous multicomponent optical fiber: Lax pair, generalized Darboux transformation and vector breathers for a three-coupled variable-coefficient nonlinear Schrodinger system

被引:35
作者
Wang, Meng
Tian, Bo [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
SEMIRATIONAL ROGUE WAVES; NONAUTONOMOUS SOLITONS; EQUATION; WATER;
D O I
10.1140/epjp/s13360-021-01918-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Optical fibers are used in the optical sensors, optical imaging, ultrafast lasers and high-speed remote communications. In this paper, a three-coupled variable-coefficient nonlinear Schrodinger system, which models the attenuation or amplification of the picosecond pulses in an inhomogeneous multicomponent optical fiber with different polarizations or frequencies, is researched. In respect to the slowly varying envelopes of optical modes, we construct a Lax pair. Based on our Lax pair, we obtain the Nth-order generalized Darboux transformation, where N is a positive integer. We acquire the first- and second-order vector breather solutions according to the generalized Darboux transformation. We present the propagation of the first- and second-order vector breathers, as well as analyze the effects of the group velocity dispersion and nonlinearity coefficients on these vector breathers. Our results may provide some theoretical help for the future research on the adjustment of the vector breathers in an inhomogeneous multicomponent optical fiber.
引用
收藏
页数:12
相关论文
共 61 条
[1]   Semirational rogue waves for the three coupled variable-coefficient nonlinear Schrodinger equations in an inhomogeneous multicomponent optical fibre [J].
Chai, Han-Peng ;
Tian, Bo ;
Chai, Jun ;
Du, Zhong .
PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (01)
[2]   Conservation Laws and Mixed-Type Vector Solitons for the 3-Coupled Variable-Coefficient Nonlinear Schrodinger Equations in Inhomogeneous Multicomponent Optical Fibre [J].
Chai, Jun ;
Tian, Bo ;
Wang, Yu-Feng ;
Sun, Wen-Rong ;
Wang, Yun-Po .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (06) :525-539
[3]   Lax pair, conservation laws and solitons for a (2+1)-dimensional fourth-order nonlinear Schrodinger equation governing an α-helical protein [J].
Chai, Jun ;
Tian, Bo ;
Zhen, Hui-Ling ;
Sun, Wen-Rong .
ANNALS OF PHYSICS, 2015, 362 :671-683
[4]   Solitons and breather waves for the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics [J].
Deng, Gao-Fu ;
Gao, Yi-Tian ;
Ding, Cui-Cui ;
Su, Jing-Jing .
CHAOS SOLITONS & FRACTALS, 2020, 140
[5]   Solitons and periodic waves for the (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics [J].
Deng, Gao-Fu ;
Gao, Yi-Tian ;
Su, Jing-Jing ;
Ding, Cui-Cui ;
Jia, Ting-Ting .
NONLINEAR DYNAMICS, 2020, 99 (02) :1039-1052
[6]   Chirped soliton solutions of Fokas-Lenells equation with perturbation terms and the effect of spatio-temporal dispersion in the modulational instability analysis [J].
Dieu-donne, Gawarai ;
Hubert, Malwe Boudoue ;
Seadawy, Aly ;
Etienne, Temwa ;
Betchewe, Gambo ;
Doka, Serge Y. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (02)
[7]   Lax pair, conservation laws, Darboux transformation, breathers and rogue waves for the coupled nonautonomous nonlinear Schrodinger system in an inhomogeneous plasma [J].
Ding, Cui-Cui ;
Gao, Yi-Tian ;
Deng, Gao-Fu ;
Wang, Dong .
CHAOS SOLITONS & FRACTALS, 2020, 133
[8]   Breather and hybrid solutions for a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation for the water waves [J].
Ding, Cui-Cui ;
Gao, Yi-Tian ;
Deng, Gao-Fu .
NONLINEAR DYNAMICS, 2019, 97 (04) :2023-2040
[9]  
Du Z, 2021, NONLINEAR DYNAM, V104, P683, DOI 10.1007/s11071-021-06293-7
[10]   Bilinear form, solitons, breathers and lumps of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics [J].
Feng, Yu-Jie ;
Gao, Yi-Tian ;
Li, Liu-Qing ;
Jia, Ting-Ting .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (03)