Carbon Nanotube/Polyaniline Composite Nanofibers: Facile Synthesis and Chemosensors

被引:188
作者
Liao, Yaozu [1 ,2 ,3 ]
Zhang, Chen [4 ]
Zhang, Ya [1 ,2 ]
Strong, Veronica [1 ,2 ]
Tang, Jianshi [5 ]
Li, Xin-Gui [3 ]
Kalantar-zadeh, Kourosh [4 ]
Hoek, Eric M. V. [6 ]
Wang, Kang L. [5 ]
Kaner, Richard B. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[3] Tongji Univ, Coll Mat Sci & Engn, Inst Mat Chem, Shanghai 200092, Peoples R China
[4] RMIT Univ, Sch Elect & Comp Engn, Melbourne, Vic 3001, Australia
[5] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
基金
中国国家自然科学基金;
关键词
Carbon nanotubes; conducting polymers; composite; nanofibers; chemosensors; POLYANILINE NANOFIBERS; NANOTUBE COMPOSITE; CONDUCTIVITY; POLYMERIZATION; FABRICATION; ROUTE;
D O I
10.1021/nl103322b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An initiator is applied to synthesize single-walled carbon nanotube/polyaniline composite nanofibers for use as high-performance chemosensors. The composite nanofibers possess widely tunable conductivities (10(-4) to 10(2) S/cm) with up to 5.0 wt % single-walled carbon nanotube (SWCNT) loadings. Chemo,sensors fabricated from the composite nanofibers synthesized with a 1.0 wt % SWCNT loading respond much more rapidly to low concentrations (100 ppb) of HCl and NH3 vapors compared to polyaniline nanofibers alone (120 s vs 1000 s). These nanofibrillar SWCNT/polyaniline composite nanostructures are promising materials for use as low-cost disposable sensors and as electrodes due to their widely tunable conductivities.
引用
收藏
页码:954 / 959
页数:6
相关论文
共 50 条
[1]   Polyaniline-coated single-walled carbon nanotubes: synthesis, characterization and impact on primary immune cells [J].
Ben-Valid, Shoshana ;
Dumortier, Helene ;
Decossas, Marion ;
Sfez, Ruthy ;
Meneghetti, Moreno ;
Bianco, Alberto ;
Yitzchaik, Shlomo .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (12) :2408-2417
[2]   Morphological development of nanofibrillar composites of polyaniline and carbon nanotubes [J].
Cabezas, Ana Lopez ;
Zhang, Zhi-Bin ;
Zheng, Li-Rong ;
Zhang, Shi-Li .
SYNTHETIC METALS, 2010, 160 (7-8) :664-668
[3]   THERMAL-PROPERTIES OF POLYANILINE AND POLY(ANILINE-CO-O-ETHYLANILINE) [J].
CONKLIN, JA ;
HUANG, SC ;
HUANG, SM ;
WEN, TL ;
KANER, RB .
MACROMOLECULES, 1995, 28 (19) :6522-6527
[4]   Vertically Aligned Single-Walled Carbon Nanotubes by Chemical Assembly - Methodology, Properties, and Applications [J].
Diao, Peng ;
Liu, Zhongfan .
ADVANCED MATERIALS, 2010, 22 (13) :1430-1449
[5]   Enhancement in Solubility and Conductivity of Polyaniline with Lignosulfonate Modified Carbon Nanotube [J].
Dong, Jin-Qiao ;
Shen, Qing .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2009, 47 (20) :2036-2046
[6]  
Dresselhaus M.S., 2001, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications
[7]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758
[8]   Evidence of Dynamic Pentagon-Heptagon Pairs in Single-Wall Carbon Nanotubes using Surface-Enhanced Raman Scattering [J].
Fujimori, Toshihiko ;
Urita, Koki ;
Ohba, Tomonori ;
Kanoh, Hirofumi ;
Kaneko, Katsumi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (19) :6764-6767
[9]   Synthesis of new polyaniline/nanotube composites using ultrasonically initiated emulsion polymerization [J].
Ginic-Markovic, Milena ;
Matisons, Janis G. ;
Cervini, Raoul ;
Simon, George P. ;
Fredericks, Peter M. .
CHEMISTRY OF MATERIALS, 2006, 18 (26) :6258-6265
[10]   Enhanced bioelectrocatalysis using single-walled carbon nanotubes (SWCNTs)/polyaniline hybrid systems in thin-film and microrod structures associated with electrodes [J].
Granot, E ;
Basnar, B ;
Cheglakov, Z ;
Katz, E ;
Willner, I .
ELECTROANALYSIS, 2006, 18 (01) :26-34