Short-Term Traffic Flow Prediction: A Long Short-Term Memory Model Enhanced by Temporal Information

被引:0
|
作者
Mou, Luntian [1 ]
Zhao, Pengfei [2 ]
Chen, Yanyan [1 ]
机构
[1] Beijing Univ Technol, Beijing Engn Res Ctr Urban Transport Operat Guara, Beijing, Peoples R China
[2] Beijing Univ Technol, Dept Informat, Beijing, Peoples R China
来源
CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD | 2019年
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Real-time and accurate short-term traffic flow prediction can effectively improve the efficiency and safety of the transportation system. However, complex traffic systems are highly nonlinear and random, which makes short-term traffic flow prediction a challenging issue. In recent years, deep-learning based methods have been widely applied in short-term traffic flow prediction. Particularly, the long short-term memory neural network (LSTM) model bears great potential for its capability in learning from temporal information. In this paper, an improved LSTM model is used to predict the short-term traffic flow of a target road section of the East 4th Ring Road of Beijing, and to analyze the influence of different input configuration on prediction accuracy as well. Experimental results demonstrate that feeding upstream flow and velocity information does improve its overall performance. Especially after traffic flow information is fed with corresponding temporal information, the accuracy of traffic flow prediction has been significantly improved.
引用
收藏
页码:2411 / 2422
页数:12
相关论文
共 50 条
  • [1] Deep Bi-directional Long Short-Term Memory Model for Short-Term Traffic Flow Prediction
    Wang, Jingyuan
    Hu, Fei
    Li, Li
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 : 306 - 316
  • [2] Dynamic Optimization Long Short-Term Memory Model Based on Data Preprocessing for Short-Term Traffic Flow Prediction
    Zhang, Yang
    Xin, Dongrong
    IEEE ACCESS, 2020, 8 : 91510 - 91520
  • [3] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [4] T-LSTM: A Long Short-Term Memory Neural Network Enhanced by Temporal Information for Traffic Flow Prediction
    Mou, Luntian
    Zhao, Pengfei
    Xie, Haitao
    Chen, Yanyan
    IEEE ACCESS, 2019, 7 : 98053 - 98060
  • [5] Short-Term Traffic Flow Prediction Based on a K-Nearest Neighbor and Bidirectional Long Short-Term Memory Model
    Zhuang, Weiqing
    Cao, Yongbo
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [6] MFOA-Bi-LSTM: An optimized bidirectional long short-term memory model for short-term traffic flow prediction
    Naheliya, Bharti
    Redhu, Poonam
    Kumar, Kranti
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 634
  • [7] Enhanced Long Short-Term Memory Model for Runoff Prediction
    Feng, Rui
    Fan, Guangwei
    Lin, Jianyi
    Yao, Baozhen
    Guo, Qinghai
    JOURNAL OF HYDROLOGIC ENGINEERING, 2021, 26 (02)
  • [8] ANALYSIS AND COMPARISON OF LONG SHORT-TERM MEMORY NETWORKS SHORT-TERM TRAFFIC PREDICTION PERFORMANCE
    Dogan, Erdem
    SCIENTIFIC JOURNAL OF SILESIAN UNIVERSITY OF TECHNOLOGY-SERIES TRANSPORT, 2020, 107 : 19 - 32
  • [9] Traffic flow prediction with Long Short-Term Memory Networks (LSTMs)
    Shao, Hongxin
    Soong, Boon-Hee
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 2986 - 2989
  • [10] Predicting Short-term Traffic Flow by Long Short-Term Memory Recurrent Neural Network
    Tian, Yongxue
    Pan, Li
    2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), 2015, : 153 - 158