The spatial entropy of two-dimensional subshifts of finite type

被引:7
作者
Juang, JQ [1 ]
Lin, SS
Shieh, SF
Lin, WW
机构
[1] Natl Chiao Tung Univ, Dept Math Appl, Hsinchu, Taiwan
[2] Natl Tsing Hua Univ, Dept Math, Hsinchu, Taiwan
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2000年 / 10卷 / 12期
关键词
D O I
10.1142/S0218127400001894
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, two recursive formulas for computing the spatial entropy of two-dimensional subshifts of finite type are given. The exact entropy of a nontrivial example arising in cellular neural networks is obtained by using such formulas. We also establish some general theory concerning the spatial entropy of two-dimensional subshifts of finite type. In particular, we show that if either of the transition matrices is rank-one, then the associated exact entropy can be explicitly obtained. The generalization of our results to higher dimension can be similarly obtained. Furthermore, these formulas can be used numerically for estimating the spatial entropy.
引用
收藏
页码:2845 / 2852
页数:8
相关论文
共 6 条
[1]  
Bellman R., 1970, INTRO MATRIX ANAL
[2]  
CHOW SN, 1996, RAND COMPUT DYN, V4, P108
[3]   CELLULAR NEURAL NETWORKS - THEORY [J].
CHUA, LO ;
YANG, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10) :1257-1272
[4]   Cellular neural networks: Mosaic pattern and spatial chaos [J].
Juang, J ;
Lin, SS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (03) :891-915
[5]  
JUANG J, UNPUB CELLULAR NEURA
[6]  
Robinson C., 1995, DYNAMICAL SYSTEM