Exploring the response of net primary productivity variations to urban expansion and climate change: A scenario analysis for Guangdong Province in China

被引:38
|
作者
Pei, Fengsong [1 ]
Li, Xia [2 ]
Liu, Xiaoping [2 ]
Lao, Chunhua [2 ]
Xia, Gengrui [1 ]
机构
[1] Jiangsu Normal Univ, Sch Urban & Environm Sci, Xuzhou 221116, Peoples R China
[2] Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Key Lab Urbanizat & Geosimulat, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Urban expansion; Climate change; Net primary productivity; Scenario analysis; CELLULAR-AUTOMATA; LAND-DEVELOPMENT; GLOBAL CHANGE; BIOME-BGC; MODEL; SIMULATION; URBANIZATION; SATELLITE; FORESTS; NPP;
D O I
10.1016/j.jenvman.2014.11.002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urban land development alters landscapes and carbon cycle, especially net primary productivity (NPP). Despite projections that NPP is often reduced by urbanization, little is known about NPP changes under future urban expansion and climate change conditions. In this paper, terrestrial NPP was calculated by using Biome-BGC model. However, this model does not explicitly address urban lands. Hence, we proposed a method of NPP-fraction to detect future urban NPP, assuming that the ratio of real NPP to potential NPP for urban cells remains constant for decades. Furthermore, NPP dynamics were explored by integrating the Biome-BGC and the cellular automata (CA), a widely used method for modeling urban growth. Consequently, urban expansion, climate change and their associated effects on the NPP were analyzed for the period of 2010-2039 using Guangdong Province in China as a case study. In addition, four scenarios were designed to reflect future conditions, namely baseline, climate change, urban expansion and comprehensive scenarios. Our analyses indicate that vegetation NPP in urban cells may increase (17.63 gC m(-2) year(-1)-2335 gC m(-2) year(-1)) in the climate change scenario. However, future urban expansion may cause some NPP losses of 241.61 gC m(-2) year(-1), decupling the NPP increase of the climate change factor. Taking into account both climate change and urban expansion, vegetation NPP in urban area may decrease, minimally at a rate of 228.54 gC m(-2) year(-1) to 231.74 gC m(-2) year(-1). Nevertheless, they may account for an overall NPP increase of 0.78 TgC year-1 to 1.28 TgC year(-1) in the whole province. All these show that the provincial NPP increase from climate change may offset the NPP decrease from urban expansion. Despite these results, it is of great significance to regulate reasonable expansion of urban lands to maintain carbon balance. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:92 / 102
页数:11
相关论文
共 50 条
  • [31] Elevation response of above-ground net primary productivity for Picea crassifolia to climate change in Qilian Mountains of Northwest China based on tree rings
    Wu, Xuan
    Jiao, Liang
    Du, Dashi
    Xue, Ruhong
    Wei, Mengyuan
    Zhang, Peng
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2024, 34 (01) : 146 - 164
  • [32] Delayed response of net primary productivity with climate change in the Yiluo River basin
    Tian, Zihao
    Qin, Tianling
    Wang, Huiliang
    Li, Yizhe
    Yan, Sheng
    Hou, Jun
    Li, Chenhao
    Abebe, Sintayehu A. A.
    FRONTIERS IN EARTH SCIENCE, 2023, 10
  • [33] Diazotrophy as a key driver of the response of marine net primary productivity to climate change
    Bopp, Laurent
    Aumont, Olivier
    Kwiatkowski, Lester
    Clerc, Corentin
    Dupont, Leonard
    Ethe, Christian
    Gorgues, Thomas
    Seferian, Roland
    Tagliabue, Alessandro
    BIOGEOSCIENCES, 2022, 19 (17) : 4267 - 4285
  • [34] Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China's forest ecosystems
    Ren, Wei
    Tian, Hanqin
    Tao, Bo
    Chappelka, Art
    Sun, Ge
    Lu, Chaoqun
    Liu, Mingliang
    Chen, Guangsheng
    Xu, Xiaofeng
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2011, 20 (03): : 391 - 406
  • [35] Spatiotemporal Dynamics of Vegetation Net Primary Productivity and Its Response to Climate Change in Inner Mongolia from 2002 to 2019
    Hao, Lei
    Wang, Shan
    Cui, Xiuping
    Zhai, Yongguang
    SUSTAINABILITY, 2021, 13 (23)
  • [36] Spatial and temporal change patterns of net primary productivity and its response to climate change in the Qinghai-Tibet Plateau of China from 2000 to 2015
    Guo, Bing
    Zang, Wenqian
    Yang, Fei
    Han, Baomin
    Chen, Shuting
    Liu, Yue
    Yang, Xiao
    He, Tianli
    Chen, Xi
    Liu, Chunting
    Gong, Rui
    JOURNAL OF ARID LAND, 2020, 12 (01) : 1 - 17
  • [37] Spatial and temporal change patterns of net primary productivity and its response to climate change in the Qinghai-Tibet Plateau of China from 2000 to 2015
    Bing Guo
    Wenqian Zang
    Fei Yang
    Baomin Han
    Shuting Chen
    Yue Liu
    Xiao Yang
    Tianli He
    Xi Chen
    Chunting Liu
    Rui Gong
    Journal of Arid Land, 2020, 12 : 1 - 17
  • [38] The impact of climate change and human activities on the change in the net primary productivity of vegetation—taking Sichuan Province as an example
    Tangrui Dai
    Xiaoai Dai
    Heng Lu
    Tao He
    Weile Li
    Cheng Li
    Shengqi Huang
    Yiyang Huang
    Chenbo Tong
    Ge Qu
    Yunfeng Shan
    Shuneng Liang
    Dongsheng Liu
    Environmental Science and Pollution Research, 2024, 31 : 7514 - 7532
  • [39] Effects of climate change and human activities on net primary productivity in the Northern Slope of Tianshan, Xinjiang, China
    Yin X.
    Zhu H.
    Gao J.
    Gao J.
    Guo L.
    Wang J.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (20): : 195 - 202
  • [40] Assessing the Net Primary Productivity Dynamics of the Desert Steppe in Northern China during the Past 20 Years and Its Response to Climate Change
    Yang, Bo
    Li, Xiaoshuang
    Xian, Yaqi
    Chai, Yalin
    Li, Min
    Yang, Kaidie
    Qiu, Xiaorui
    SUSTAINABILITY, 2022, 14 (09)