Coherence time characterization method for hard X-ray free-electron lasers

被引:1
作者
Zhou, Guanqun [1 ,2 ,3 ]
Jiao, Yi [1 ]
Raubenheimer, Tor O. [2 ]
Wang, Jiuqing [1 ,3 ]
Holman, Aaron J. [4 ,5 ]
Tsai, Cheng-Ying [6 ]
Wu, Jerome Y. [7 ]
Wu, Weiwei [8 ]
Yang, Chuan [9 ]
Yoon, Moohyun [10 ]
Wu, Juhao [2 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Accelerat Phys & Technol, Beijing 100049, Peoples R China
[2] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[5] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[6] Huazhong Univ Sci & Technol, Wuhan 430074, Peoples R China
[7] Jane Lathrop Stanford Middle Sch, 480 E Meadow Dr, Palo Alto, CA 94306 USA
[8] JSerra Catholic High Sch, 26351 Junipero Serra Rd, San Juan Capistrano, CA 92675 USA
[9] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China
[10] Pohang Univ Sci & Technol, Pohang 37673, South Korea
关键词
TEMPORAL COHERENCE; DYNAMICS; PULSES;
D O I
10.1364/OE.28.010928
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Coherence time is one of the fundamental characteristics of light sources. Methods based on autocorrelation have been widely applied from optical domain to soft X-rays to characterize the radiation coherence time. However, for the hard X-ray regime, due to the lack of proper mirrors, it is extremely difficult to implement such autocorrelation scheme. In this paper, a novel approach for characterizing the coherence time of a hard X-ray free-electron laser (FEL) is proposed and validated numerically. A phase shifter is adopted to control the correlation between X-ray and microbunched electrons. The coherence time of the FEL pulse can be extracted from the cross-correlation. Semi-analytical analysis and three-dimensional time-dependent numerical simulations are presented to elaborate the details. A coherence time of 218.2 attoseconds for 6.92 keV X-ray FEL pulses is obtained in our simulation based on the configuration of Linac Coherent Light Source. This approach provides critical temporal coherence diagnostics for X-ray FELs, and is decoupled from machine parameters, applicable for any photon energy, radiation brightness, repetition rate and FEL pulse duration. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:10928 / 10938
页数:11
相关论文
共 50 条
[31]   Application of photoelectron spectroscopy to the measurement of the flux of x-ray free-electron lasers irradiating clusters or biomolecules [J].
Moribayashi, Kengo .
PHYSICAL REVIEW A, 2009, 80 (02)
[32]   Proposal of X-ray absorption spectroscopy and magnetic circular dichroism using broadband free-electron lasers [J].
Deng, Bangjie ;
Yan, Jiawei ;
Zhang, Qingmin ;
Sang, Yaodong ;
Deng, Haixiao .
JOURNAL OF SYNCHROTRON RADIATION, 2019, 26 (01) :1-10
[33]   Single-shot pulse duration monitor for extreme ultraviolet and X-ray free-electron lasers [J].
Riedel, R. ;
Al-Shemmary, A. ;
Gensch, M. ;
Golz, T. ;
Harmand, M. ;
Medvedev, N. ;
Prandolini, M. J. ;
Sokolowski-Tinten, K. ;
Toleikis, S. ;
Wegner, U. ;
Ziaja, B. ;
Stojanovic, N. ;
Tavella, F. .
NATURE COMMUNICATIONS, 2013, 4
[34]   An atomic-scale investigation of structural transitions in ruthenium induced by x-ray free-electron lasers [J].
Hai, Xue ;
Yin, Ya-Ru ;
Tong, Ya-Jun ;
Zhang, Xiao-Feng ;
Wang, Han ;
Zhang, Fei-Fei ;
Wen, A-Li ;
Ren, Cui-Lan ;
Huai, Ping .
JOURNAL OF APPLIED PHYSICS, 2025, 137 (20)
[35]   The European X-ray free-electron laser facility in Hamburg [J].
Altarelli, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2011, 269 (24) :2845-2849
[36]   Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser [J].
Katayama, Tetsuo ;
Inubushi, Yuichi ;
Obara, Yuki ;
Sato, Takahiro ;
Togashi, Tadashi ;
Tono, Kensuke ;
Hatsui, Takaki ;
Kameshima, Takashi ;
Bhattacharya, Atanu ;
Ogi, Yoshihiro ;
Kurahashi, Naoya ;
Misawa, Kazuhiko ;
Suzuki, Toshinori ;
Yabashi, Makina .
APPLIED PHYSICS LETTERS, 2013, 103 (13)
[37]   Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser [J].
Beyerlein, Kenneth R. ;
Jonsson, H. Olof ;
Alonso-Mori, Roberto ;
Aquila, Andrew ;
Barty, Sasa ;
Barty, Anton ;
Bean, Richard ;
Koglin, Jason E. ;
Messerschmidt, Marc ;
Ragazzon, Davide ;
Sokaras, Dimosthenis ;
Williams, Garth J. ;
Hau-Riege, Stefan ;
Boutet, Sebastien ;
Chapman, Henry N. ;
Imneanu, Nicusor T. ;
Caleman, Carl .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (22) :5652-5657
[38]   A phenomenological model of the X-ray pulse statistics of a high-repetition-rate X-ray free-electron laser [J].
Guest, Trey W. ;
Bean, Richard ;
Kammering, Raimund ;
van Riessen, Grant ;
Mancuso, Adrian P. ;
Abbey, Brian .
IUCRJ, 2023, 10 :708-719
[39]   Destruction-and-diffraction by X-ray free-electron laser [J].
Wang, Jimin .
PROTEIN SCIENCE, 2016, 25 (09) :1585-1592
[40]   Damage threshold of platinum/carbon multilayers under hard X-ray free-electron laser irradiation [J].
Kim, Jangwoo ;
Nagahira, Ayaka ;
Koyama, Takahisa ;
Matsuyama, Satoshi ;
Sano, Yasuhisa ;
Yabashi, Makina ;
Ohashi, Haruhiko ;
Ishikawa, Tetsuya ;
Yamauchi, Kazuto .
OPTICS EXPRESS, 2015, 23 (22) :29032-29037