Coherence time characterization method for hard X-ray free-electron lasers

被引:1
作者
Zhou, Guanqun [1 ,2 ,3 ]
Jiao, Yi [1 ]
Raubenheimer, Tor O. [2 ]
Wang, Jiuqing [1 ,3 ]
Holman, Aaron J. [4 ,5 ]
Tsai, Cheng-Ying [6 ]
Wu, Jerome Y. [7 ]
Wu, Weiwei [8 ]
Yang, Chuan [9 ]
Yoon, Moohyun [10 ]
Wu, Juhao [2 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Accelerat Phys & Technol, Beijing 100049, Peoples R China
[2] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[5] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[6] Huazhong Univ Sci & Technol, Wuhan 430074, Peoples R China
[7] Jane Lathrop Stanford Middle Sch, 480 E Meadow Dr, Palo Alto, CA 94306 USA
[8] JSerra Catholic High Sch, 26351 Junipero Serra Rd, San Juan Capistrano, CA 92675 USA
[9] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China
[10] Pohang Univ Sci & Technol, Pohang 37673, South Korea
关键词
TEMPORAL COHERENCE; DYNAMICS; PULSES;
D O I
10.1364/OE.28.010928
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Coherence time is one of the fundamental characteristics of light sources. Methods based on autocorrelation have been widely applied from optical domain to soft X-rays to characterize the radiation coherence time. However, for the hard X-ray regime, due to the lack of proper mirrors, it is extremely difficult to implement such autocorrelation scheme. In this paper, a novel approach for characterizing the coherence time of a hard X-ray free-electron laser (FEL) is proposed and validated numerically. A phase shifter is adopted to control the correlation between X-ray and microbunched electrons. The coherence time of the FEL pulse can be extracted from the cross-correlation. Semi-analytical analysis and three-dimensional time-dependent numerical simulations are presented to elaborate the details. A coherence time of 218.2 attoseconds for 6.92 keV X-ray FEL pulses is obtained in our simulation based on the configuration of Linac Coherent Light Source. This approach provides critical temporal coherence diagnostics for X-ray FELs, and is decoupled from machine parameters, applicable for any photon energy, radiation brightness, repetition rate and FEL pulse duration. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:10928 / 10938
页数:11
相关论文
共 50 条
  • [21] Polarization control in an X-ray free-electron laser
    Lutman, Alberto A.
    MacArthur, James P.
    Ilchen, Markus
    Lindahl, Anton O.
    Buck, Jens
    Coffee, Ryan N.
    Dakovski, Georgi L.
    Dammann, Lars
    Ding, Yuantao
    Durr, Hermann A.
    Glaser, Leif
    Grunert, Jan
    Hartmann, Gregor
    Hartmann, Nick
    Higley, Daniel
    Hirsch, Konstantin
    Levashov, Yurii I.
    Marinelli, Agostino
    Maxwell, Tim
    Mitra, Ankush
    Moeller, Stefan
    Osipov, Timur
    Peters, Franz
    Planas, Marc
    Shevchuk, Ivan
    Schlotter, William F.
    Scholz, Frank
    Seltmann, Jorn
    Viefhaus, Jens
    Walter, Peter
    Wolf, Zachary R.
    Huang, Zhirong
    Nuhn, Heinz-Dieter
    NATURE PHOTONICS, 2016, 10 (07) : 468 - 472
  • [22] Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers
    Fortmann-Grote, C.
    Bielecki, J.
    Jurek, Z.
    Santra, R.
    Ziaja-Motyka, B.
    Mancuso, A. P.
    ADVANCES IN COMPUTATIONAL METHODS FOR X-RAY OPTICS IV, 2017, 10388
  • [23] A versatile experimental system for tracking ultrafast chemical reactions with X-ray free-electron lasers
    Katayama, Tetsuo
    Nozawa, Shunsuke
    Umena, Yasufumi
    Lee, SungHee
    Togashi, Tadashi
    Owada, Shigeki
    Yabashi, Makina
    STRUCTURAL DYNAMICS-US, 2019, 6 (05):
  • [24] Development of ultrafast capabilities for X-ray free-electron lasers at the linac coherent light source
    Coffee, Ryan N.
    Cryan, James P.
    Duris, Joseph
    Helml, Wolfram
    Li, Siqi
    Marinelli, Agostino
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 377 (2145):
  • [25] Femtosecond X-ray free-electron lasers: A new tool for studying nanocrystals and single macromolecules
    Krupyanskii, Yu. F.
    Balabaev, N. K.
    Petrova, T. E.
    Sinitsyn, D. O.
    Gryzlova, E. V.
    Tereshkina, K. B.
    Abdulnasyrov, E. G.
    Stepanov, A. S.
    Lunin, V. Yu.
    Grum-Grzhimailo, A. N.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 8 (04) : 445 - 456
  • [26] Application of Extremely Bright and Coherent Soft and Hard X-Ray Free-Electron Laser Radiation
    Tschentscher, Th.
    X-RAY LASERS 2008, PROCEEDINGS, 2009, 130 : 509 - 519
  • [27] Time-resolved imaging using x-ray free electron lasers
    Barty, Anton
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (19)
  • [28] Attosecond Hard X-ray Free Electron Laser
    Kumar, Sandeep
    Kang, Heung-Sik
    Kim, Dong-Eon
    APPLIED SCIENCES-BASEL, 2013, 3 (01): : 251 - 266
  • [29] Attosecond time-energy structure of X-ray free-electron laser pulses
    Hartmann, N.
    Hartmann, G.
    Heider, R.
    Wagner, M. S.
    Ilchen, M.
    BucK, J.
    Lindahl, A. O.
    Benko, C.
    Gruenert, J.
    Krzywinski, J.
    Liu, J.
    Lutman, A. A.
    Marinelli, A.
    Maxwell, T.
    Miahnahri, A. A.
    Moeller, S. P.
    Planas, M.
    Robinson, J.
    Kazansky, A. K.
    Kabachnik, N. M.
    Viefhaus, J.
    Feurer, T.
    Kienberger, R.
    Coffee, R. N.
    Helml, W.
    NATURE PHOTONICS, 2018, 12 (04) : 215 - +
  • [30] Molecular Simulations of Liquid Jet Explosions and Shock Waves Induced by X-Ray Free-Electron Lasers
    Chatzimagas, Leonie
    Hub, Jochen S.
    PHYSICAL REVIEW LETTERS, 2023, 131 (13)