Coherence time characterization method for hard X-ray free-electron lasers

被引:1
作者
Zhou, Guanqun [1 ,2 ,3 ]
Jiao, Yi [1 ]
Raubenheimer, Tor O. [2 ]
Wang, Jiuqing [1 ,3 ]
Holman, Aaron J. [4 ,5 ]
Tsai, Cheng-Ying [6 ]
Wu, Jerome Y. [7 ]
Wu, Weiwei [8 ]
Yang, Chuan [9 ]
Yoon, Moohyun [10 ]
Wu, Juhao [2 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Accelerat Phys & Technol, Beijing 100049, Peoples R China
[2] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[5] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[6] Huazhong Univ Sci & Technol, Wuhan 430074, Peoples R China
[7] Jane Lathrop Stanford Middle Sch, 480 E Meadow Dr, Palo Alto, CA 94306 USA
[8] JSerra Catholic High Sch, 26351 Junipero Serra Rd, San Juan Capistrano, CA 92675 USA
[9] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China
[10] Pohang Univ Sci & Technol, Pohang 37673, South Korea
关键词
TEMPORAL COHERENCE; DYNAMICS; PULSES;
D O I
10.1364/OE.28.010928
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Coherence time is one of the fundamental characteristics of light sources. Methods based on autocorrelation have been widely applied from optical domain to soft X-rays to characterize the radiation coherence time. However, for the hard X-ray regime, due to the lack of proper mirrors, it is extremely difficult to implement such autocorrelation scheme. In this paper, a novel approach for characterizing the coherence time of a hard X-ray free-electron laser (FEL) is proposed and validated numerically. A phase shifter is adopted to control the correlation between X-ray and microbunched electrons. The coherence time of the FEL pulse can be extracted from the cross-correlation. Semi-analytical analysis and three-dimensional time-dependent numerical simulations are presented to elaborate the details. A coherence time of 218.2 attoseconds for 6.92 keV X-ray FEL pulses is obtained in our simulation based on the configuration of Linac Coherent Light Source. This approach provides critical temporal coherence diagnostics for X-ray FELs, and is decoupled from machine parameters, applicable for any photon energy, radiation brightness, repetition rate and FEL pulse duration. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:10928 / 10938
页数:11
相关论文
共 50 条
[21]   Polarization control in an X-ray free-electron laser [J].
Lutman, Alberto A. ;
MacArthur, James P. ;
Ilchen, Markus ;
Lindahl, Anton O. ;
Buck, Jens ;
Coffee, Ryan N. ;
Dakovski, Georgi L. ;
Dammann, Lars ;
Ding, Yuantao ;
Durr, Hermann A. ;
Glaser, Leif ;
Grunert, Jan ;
Hartmann, Gregor ;
Hartmann, Nick ;
Higley, Daniel ;
Hirsch, Konstantin ;
Levashov, Yurii I. ;
Marinelli, Agostino ;
Maxwell, Tim ;
Mitra, Ankush ;
Moeller, Stefan ;
Osipov, Timur ;
Peters, Franz ;
Planas, Marc ;
Shevchuk, Ivan ;
Schlotter, William F. ;
Scholz, Frank ;
Seltmann, Jorn ;
Viefhaus, Jens ;
Walter, Peter ;
Wolf, Zachary R. ;
Huang, Zhirong ;
Nuhn, Heinz-Dieter .
NATURE PHOTONICS, 2016, 10 (07) :468-472
[22]   Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers [J].
Fortmann-Grote, C. ;
Bielecki, J. ;
Jurek, Z. ;
Santra, R. ;
Ziaja-Motyka, B. ;
Mancuso, A. P. .
ADVANCES IN COMPUTATIONAL METHODS FOR X-RAY OPTICS IV, 2017, 10388
[23]   A versatile experimental system for tracking ultrafast chemical reactions with X-ray free-electron lasers [J].
Katayama, Tetsuo ;
Nozawa, Shunsuke ;
Umena, Yasufumi ;
Lee, SungHee ;
Togashi, Tadashi ;
Owada, Shigeki ;
Yabashi, Makina .
STRUCTURAL DYNAMICS-US, 2019, 6 (05)
[24]   Development of ultrafast capabilities for X-ray free-electron lasers at the linac coherent light source [J].
Coffee, Ryan N. ;
Cryan, James P. ;
Duris, Joseph ;
Helml, Wolfram ;
Li, Siqi ;
Marinelli, Agostino .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 377 (2145)
[25]   Femtosecond X-ray free-electron lasers: A new tool for studying nanocrystals and single macromolecules [J].
Krupyanskii, Yu. F. ;
Balabaev, N. K. ;
Petrova, T. E. ;
Sinitsyn, D. O. ;
Gryzlova, E. V. ;
Tereshkina, K. B. ;
Abdulnasyrov, E. G. ;
Stepanov, A. S. ;
Lunin, V. Yu. ;
Grum-Grzhimailo, A. N. .
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 8 (04) :445-456
[26]   Application of Extremely Bright and Coherent Soft and Hard X-Ray Free-Electron Laser Radiation [J].
Tschentscher, Th. .
X-RAY LASERS 2008, PROCEEDINGS, 2009, 130 :509-519
[27]   Time-resolved imaging using x-ray free electron lasers [J].
Barty, Anton .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (19)
[28]   Attosecond Hard X-ray Free Electron Laser [J].
Kumar, Sandeep ;
Kang, Heung-Sik ;
Kim, Dong-Eon .
APPLIED SCIENCES-BASEL, 2013, 3 (01) :251-266
[29]   Attosecond time-energy structure of X-ray free-electron laser pulses [J].
Hartmann, N. ;
Hartmann, G. ;
Heider, R. ;
Wagner, M. S. ;
Ilchen, M. ;
BucK, J. ;
Lindahl, A. O. ;
Benko, C. ;
Gruenert, J. ;
Krzywinski, J. ;
Liu, J. ;
Lutman, A. A. ;
Marinelli, A. ;
Maxwell, T. ;
Miahnahri, A. A. ;
Moeller, S. P. ;
Planas, M. ;
Robinson, J. ;
Kazansky, A. K. ;
Kabachnik, N. M. ;
Viefhaus, J. ;
Feurer, T. ;
Kienberger, R. ;
Coffee, R. N. ;
Helml, W. .
NATURE PHOTONICS, 2018, 12 (04) :215-+
[30]   Molecular Simulations of Liquid Jet Explosions and Shock Waves Induced by X-Ray Free-Electron Lasers [J].
Chatzimagas, Leonie ;
Hub, Jochen S. .
PHYSICAL REVIEW LETTERS, 2023, 131 (13)