Coherence time characterization method for hard X-ray free-electron lasers

被引:1
作者
Zhou, Guanqun [1 ,2 ,3 ]
Jiao, Yi [1 ]
Raubenheimer, Tor O. [2 ]
Wang, Jiuqing [1 ,3 ]
Holman, Aaron J. [4 ,5 ]
Tsai, Cheng-Ying [6 ]
Wu, Jerome Y. [7 ]
Wu, Weiwei [8 ]
Yang, Chuan [9 ]
Yoon, Moohyun [10 ]
Wu, Juhao [2 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Accelerat Phys & Technol, Beijing 100049, Peoples R China
[2] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[5] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[6] Huazhong Univ Sci & Technol, Wuhan 430074, Peoples R China
[7] Jane Lathrop Stanford Middle Sch, 480 E Meadow Dr, Palo Alto, CA 94306 USA
[8] JSerra Catholic High Sch, 26351 Junipero Serra Rd, San Juan Capistrano, CA 92675 USA
[9] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China
[10] Pohang Univ Sci & Technol, Pohang 37673, South Korea
关键词
TEMPORAL COHERENCE; DYNAMICS; PULSES;
D O I
10.1364/OE.28.010928
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Coherence time is one of the fundamental characteristics of light sources. Methods based on autocorrelation have been widely applied from optical domain to soft X-rays to characterize the radiation coherence time. However, for the hard X-ray regime, due to the lack of proper mirrors, it is extremely difficult to implement such autocorrelation scheme. In this paper, a novel approach for characterizing the coherence time of a hard X-ray free-electron laser (FEL) is proposed and validated numerically. A phase shifter is adopted to control the correlation between X-ray and microbunched electrons. The coherence time of the FEL pulse can be extracted from the cross-correlation. Semi-analytical analysis and three-dimensional time-dependent numerical simulations are presented to elaborate the details. A coherence time of 218.2 attoseconds for 6.92 keV X-ray FEL pulses is obtained in our simulation based on the configuration of Linac Coherent Light Source. This approach provides critical temporal coherence diagnostics for X-ray FELs, and is decoupled from machine parameters, applicable for any photon energy, radiation brightness, repetition rate and FEL pulse duration. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:10928 / 10938
页数:11
相关论文
共 50 条
  • [11] Fresh-slice multicolour X-ray free-electron lasers
    Lutman, Alberto A.
    Maxwell, Timothy J.
    MacArthur, James P.
    Guetg, Marc W.
    Berrah, Nora
    Coffee, Ryan N.
    Ding, Yuantao
    Huang, Zhirong
    Marinelli, Agostino
    Moeller, Stefan
    Zemella, Johann C. U.
    NATURE PHOTONICS, 2016, 10 (11) : 745 - 750
  • [12] Few-femtosecond time-resolved measurements of X-ray free-electron lasers
    Behrens, C.
    Decker, F. -J.
    Ding, Y.
    Dolgashev, V. A.
    Frisch, J.
    Huang, Z.
    Krejcik, P.
    Loos, H.
    Lutman, A.
    Maxwell, T. J.
    Turner, J.
    Wang, J.
    Wang, M. -H.
    Welch, J.
    Wu, J.
    NATURE COMMUNICATIONS, 2014, 5
  • [13] Time-resolved experiments on gas-phase atoms and molecules with XUV and X-ray free-electron lasers
    Rolles, Daniel
    ADVANCES IN PHYSICS-X, 2023, 8 (01):
  • [14] Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers
    Stern, S.
    Holmegaard, L.
    Filsinger, F.
    Rouzee, A.
    Rudenko, A.
    Johnsson, P.
    Martin, A. V.
    Barty, A.
    Bostedt, C.
    Bozek, J.
    Coffee, R.
    Epp, S.
    Erk, B.
    Foucar, L.
    Hartmann, R.
    Kimmel, N.
    Kuehnel, K-U.
    Maurer, J.
    Messerschmidt, M.
    Rudek, B.
    Starodub, D.
    Thogersen, J.
    Weidenspointner, G.
    White, T. A.
    Stapelfeldt, H.
    Rolles, D.
    Chapman, H. N.
    Kuepper, J.
    FARADAY DISCUSSIONS, 2014, 171 : 393 - 418
  • [15] Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser
    Gorobtsov, O. Yu
    Mukharamova, N.
    Lazarev, S.
    Chollet, M.
    Zhu, D.
    Feng, Y.
    Kurta, R. P.
    Meijer, J-M
    Williams, G.
    Sikorski, M.
    Song, S.
    Dzhigaev, D.
    Serkez, S.
    Singer, A.
    Petukhov, A., V
    Vartanyants, I. A.
    SCIENTIFIC REPORTS, 2018, 8
  • [16] Sub-femtosecond precision measurement of relative X-ray arrival time for free-electron lasers
    Hartmann, N.
    Helml, W.
    Galler, A.
    Bionta, M. R.
    Gruenert, J.
    Molodtsov, S. L.
    Ferguson, K. R.
    Schorb, S.
    Swiggers, M. L.
    Carron, S.
    Bostedt, C.
    Castagna, J. -C.
    Bozek, J.
    Glownia, J. M.
    Kane, D. J.
    Fry, A. R.
    White, W. E.
    Hauri, C. P.
    Feurer, T.
    Coffee, R. N.
    NATURE PHOTONICS, 2014, 8 (09) : 706 - 709
  • [17] Single-Molecule Imaging with X-Ray Free-Electron Lasers: Dream or Reality?
    Fratalocchi, A.
    Ruocco, G.
    PHYSICAL REVIEW LETTERS, 2011, 106 (10)
  • [18] Nanofocusing of X-ray free-electron lasers by grazing-incidence reflective optics
    Yamauchi, Kazuto
    Yabashi, Makina
    Ohashi, Haruhiko
    Koyama, Takahisa
    Ishikawa, Tetsuya
    JOURNAL OF SYNCHROTRON RADIATION, 2015, 22 : 592 - 598
  • [19] Time-dependent wave front propagation simulation of a hard x-ray split-and-delay unit: Towards a measurement of the temporal coherence properties of x-ray free electron lasers
    Roling, S.
    Zacharias, H.
    Samoylova, L.
    Sinn, H.
    Tschentscher, Th.
    Chubar, O.
    Buzmakov, A.
    Schneidmiller, E.
    Yurkov, M. V.
    Siewert, F.
    Braun, S.
    Gawlitza, P.
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2014, 17 (11):
  • [20] Ultrashort Free-Electron Laser X-ray Pulses
    Helml, Wolfram
    Grguras, Ivanka
    Juranic, Pavle N.
    Duesterer, Stefan
    Mazza, Tommaso
    Maier, Andreas R.
    Hartmann, Nick
    Ilchen, Markus
    Hartmann, Gregor
    Patthey, Luc
    Callegari, Carlo
    Costello, John T.
    Meyer, Michael
    Coffee, Ryan N.
    Cavalieri, Adrian L.
    Kienberger, Reinhard
    APPLIED SCIENCES-BASEL, 2017, 7 (09):