Bioreversibly crosslinked polyplexes of PEI and high molecular weight PEG show extended circulation times in vivo

被引:101
作者
Neu, Michael [1 ]
Germershaus, Oliver [1 ]
Behe, Martin [2 ]
Kissel, Thomas [1 ]
机构
[1] Univ Marburg, Dept Pharmaceut & Biopharm, D-35037 Marburg, Germany
[2] Univ Marburg, Dept Nucl Med, D-35037 Marburg, Germany
关键词
gene delivery; poly(ethylene imine); poly(ethylene glycol); crosslinking; pharmacokinetics;
D O I
10.1016/j.jconrel.2007.08.009
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Copolymers consisting of branched PEI 25 kDa grafted with high molecular weight PEG at a low degree of substitution were successfully synthesized using a simple two-step procedure. The resulting AB-type and ABA-type copolymers were tested for cytotoxicity and DNA condensation and complexation properties. Their polyplexes with plasmid DNA were characterized in terms of DNA size and surface charge, transfection efficiency and blood compatibility. Pharmacokinetic profiles of the complexes containing P-32-labeled plasmid were assessed before and after surface crosslinking. A set of four copolymers containing one or two PEG 20 kDa or PEG 30 kDa chains was obtained. The cytotoxicity of PEI was strongly reduced after copolymerization. The copolymer polyplexes showed hydrodynamic diameters of less than 200 nm, comparable to PEI 25. Similarly, no reduction in DNA condensation and complexation properties was found. In fact, PEI-PEG(30 k) copolymers exhibited better condensation and complexation properties than PEI 25. The transfection efficiency of copolymer polyplexes was increased 10-fold compared to PEI 25 control and the hemolytic activity was markedly reduced. After intravenous injection into mice, plasmids complexed to PEI-PEG(30 k) copolymers resulted in significantly increased circulation times. After stabilizing the polyplexes with a redox sensitive, biodegradable crosslinker, blood levels of plasmid could be further increased up to 125% compared to PEI. These results demonstrate that polyplexes prepared using a combined strategy of surface crosslinking and PEGylation seem to provide promising properties as stable, long circulating vectors. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 80
页数:12
相关论文
共 62 条
[1]   Biodegradable poly (ethylenimine) for plasmid DNA delivery [J].
Ahn, CH ;
Chae, SY ;
Bae, YH ;
Kim, SW .
JOURNAL OF CONTROLLED RELEASE, 2002, 80 (1-3) :273-282
[2]   Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis [J].
Akinc, A ;
Thomas, M ;
Klibanov, AM ;
Langer, R .
JOURNAL OF GENE MEDICINE, 2005, 7 (05) :657-663
[3]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[4]   A thermodynamic characterization of the interaction of a cationic copolymer with DNA [J].
Bronich, T ;
Kabanov, AV ;
Marky, LA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (25) :6042-6050
[5]   PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility [J].
Brownlie, A ;
Uchegbu, IF ;
Schätzlein, AG .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2004, 274 (1-2) :41-52
[6]   Efficiency of polyethylenimines and polyethylenimine-graft-poly (ethylene glycol) block copolymers to protect oligonucleotides against enzymatic degradation [J].
Brus, C ;
Petersen, H ;
Aigner, A ;
Czubayko, F ;
Kissel, T .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2004, 57 (03) :427-430
[7]   Polymer-coated polyethylenimine/DNA complexes designed for triggered activation by intracellular reduction [J].
Carlisle, RC ;
Etrych, T ;
Briggs, SS ;
Preece, JA ;
Ulbrich, K ;
Seymour, LW .
JOURNAL OF GENE MEDICINE, 2004, 6 (03) :337-344
[8]   Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery [J].
Dash, PR ;
Read, ML ;
Barrett, LB ;
Wolfert, M ;
Seymour, LW .
GENE THERAPY, 1999, 6 (04) :643-650
[9]   The effect of poly(ethylene glycol) molecular architecture on cellular interaction and uptake of DNA complexes [J].
Deshpande, MC ;
Davies, MC ;
Garnett, MC ;
Williams, PM ;
Armitage, D ;
Bailey, L ;
Vamvakaki, M ;
Armes, SP ;
Stolnik, S .
JOURNAL OF CONTROLLED RELEASE, 2004, 97 (01) :143-156
[10]   Influence of polymer architecture on the structure of complexes formed by PEG-tertiary amine methacrylate copolymers and phosphorothioate oligonucleotide [J].
Deshpande, MC ;
Garnett, MC ;
Vamvakaki, M ;
Bailey, L ;
Armes, SP ;
Stolnik, S .
JOURNAL OF CONTROLLED RELEASE, 2002, 81 (1-2) :185-199