A Low-Complexity Massive MIMO Precoding Algorithm Based on Chebyshev Iteration

被引:20
作者
Zhang, Chi [1 ]
Li, Zhengquan [1 ,2 ]
Shen, Lianfeng [1 ]
Yan, Feng [1 ]
Wu, Ming [1 ]
Wang, Xiumin [3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[3] China Jiliang Univ, Coll Informat Engn, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
RZF precoding; Chebyshev iteration; Newton iteration; massive MIMO; INVERSE; MATRIX;
D O I
10.1109/ACCESS.2017.2760881
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Precoding algorithm is used to transmit signals effectively and to reduce the interferences from other user terminals in the massive multiple-input multiple-output (MIMO) systems. In order to decrease the computational complexity of the precoding matrix, this paper proposes a new precoding algorithm. We use Chebyshev iteration to estimate the matrix inversion in the regularized zero-forcing precoding (RZF) algorithm. It does not need to compute the matrix inversion directly but uses iterations to estimate the matrix inversion. Therefore, the computational complexity can be decreased in this way. Furthermore, Chebyshev iteration has lower convergence rate, and it can gain precoding matrix quickly. This paper analyzes the performance of the Chebyshev-RZF precoding algorithm using average achievable rate and computes the complexity of the algorithm. Then, this paper optimizes initial values of the Chebyshev iteration algorithm on the basis of the feature of massive MIMO systems and makes initial values easier to be obtained. Simulation results show that after two iterations, the Chebyshev-RZF precoding algorithm can get similar average achievable rate as the RZF precoding algorithm does. An optimized Chebyshev-RZF precoding algorithm gets similar performance to the Chebyshev-RZF precoding algorithm after one iteration.
引用
收藏
页码:22545 / 22551
页数:7
相关论文
共 17 条
[1]   Geometric constructions of iterative functions to solve nonlinear equations [J].
Amat, S ;
Busquier, S ;
Gutiérrez, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (01) :197-205
[2]   What Will 5G Be? [J].
Andrews, Jeffrey G. ;
Buzzi, Stefano ;
Choi, Wan ;
Hanly, Stephen V. ;
Lozano, Angel ;
Soong, Anthony C. K. ;
Zhang, Jianzhong Charlie .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1065-1082
[3]   Newton-like iteration based on a cubic polynomial for structured matrices [J].
Codevico, G ;
Pan, VY ;
Van Barel, M .
NUMERICAL ALGORITHMS, 2004, 36 (04) :365-380
[4]  
Gao X., 2011, PROC IEEE VEHICULAR, P1
[5]   An Overview of Massive MIMO: Benefits and Challenges [J].
Lu, Lu ;
Li, Geoffrey Ye ;
Swindlehurst, A. Lee ;
Ashikhmin, Alexei ;
Zhang, Rui .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :742-758
[6]  
Man Y., 2017, PROC IEEE 85 VEH TEC, P1
[7]  
Man Y., 2016, PROC IEEE INT C COMM, P1
[8]   A new scheme of computing the approximate inverse preconditioner for the reduced linear systems [J].
Moriya, K. ;
Nodera, T. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 199 (02) :345-352
[9]  
Müller A, 2014, PR IEEE SEN ARRAY, P273, DOI 10.1109/SAM.2014.6882394
[10]  
NAJAFI HS, 2006, J APPL MATH COMPUT, V183, P539, DOI DOI 10.1016/J.AMC.2006.05.108