Malignancy risk estimation of pulmonary nodules in screening CTs: Comparison between a computer model and human observers

被引:28
作者
van Riel, Sarah J. [1 ]
Ciompi, Francesco [1 ]
Wille, Mathilde M. Winkler [2 ]
Dirksen, Asger [3 ]
Lam, Stephen [4 ]
Scholten, Ernst Th. [1 ]
Rossi, Santiago E. [5 ]
Sverzellati, Nicola [6 ]
Naqibullah, Matiullah [3 ]
Wittenberg, Rianne [7 ]
Hovinga-de Boer, Marieke C. [8 ]
Snoeren, Miranda [1 ]
Peters-Bax, Liesbeth [1 ]
Mets, Onno [9 ]
Brink, Monique [1 ]
Prokop, Mathias [1 ]
Schaefer-Prokop, Cornelia [1 ,8 ]
van Ginneken, Bram [1 ]
机构
[1] Radboud Univ Nijmegen, Dept Radiol & Nucl Med, Med Ctr, Nijmegen, Netherlands
[2] Nordsjaellands Hosp, Sect Radiol, Dept Diagnost Imaging, Hillerod, Denmark
[3] Univ Copenhagen, Gentofte Hosp, Dept Pulmonol, Hellerup, Denmark
[4] British Columbia Canc Agcy, Dept Integrat Oncol, Vancouver, BC, Canada
[5] Ctr Diagnost Dr Enrique Rossi, Dept Radiol, Buenos Aires, DF, Argentina
[6] Univ Hosp Parma, Div Radiol, Dept Clin Sci, Parma, Italy
[7] Vrije Univ Amsterdam, Dept Radiol, Med Ctr, Amsterdam, Netherlands
[8] Meander Med Ctr, Dept Radiol, Amersfoort, Netherlands
[9] UMC Utrecht, Dept Radiol, Utrecht, Netherlands
关键词
LUNG-CANCER; PROBABILITY; VALIDATION; TRIAL; TOMOGRAPHY; SCANS;
D O I
10.1371/journal.pone.0185032
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Purpose To compare human observers to a mathematically derived computer model for differentiation between malignant and benign pulmonary nodules detected on baseline screening computed tomography (CT) scans. Methods A case-cohort study design was chosen. The study group consisted of 300 chest CT scans from the Danish Lung Cancer Screening Trial (DLCST). It included all scans with proven malignancies (n = 62) and two subsets of randomly selected baseline scans with benign nodules of all sizes (n = 120) and matched in size to the cancers, respectively (n = 118). Eleven observers and the computer model (PanCan) assigned a malignancy probability score to each nodule. Performances were expressed by area under the ROC curve (AUC). Performance differences were tested using the Dorfman, Berbaum and Metz method. Seven observers assessed morphological nodule characteristics using a predefined list. Differences in morphological features between malignant and size-matched benign nodules were analyzed using chi-square analysis with Bonferroni correction. A significant difference was defined at p < 0.004. Results Performances of the model and observers were equivalent (AUC 0.932 versus 0.910, p = 0.184) for risk-assessment of malignant and benign nodules of all sizes. However, human readers performed superior to the computer model for differentiating malignant nodules from size-matched benign nodules (AUC 0.819 versus 0.706, p < 0.001). Large variations between observers were seen for ROC areas and ranges of risk scores. Morphological findings indicative of malignancy referred to border characteristics (spiculation, p < 0.001) and perinodular architectural deformation (distortion of surrounding lung parenchyma architecture, p < 0.001; pleural retraction, p = 0.002). Conclusions Computer model and human observers perform equivalent for differentiating malignant from randomly selected benign nodules, confirming the high potential of computer models for nodule risk estimation in population based screening studies. However, computer models highly rely on size as discriminator. Incorporation of other morphological criteria used by human observers to superiorly discriminate size-matched malignant from benign nodules, will further improve computer performance.
引用
收藏
页数:15
相关论文
共 28 条
[1]   Results of the Two Incidence Screenings in the National Lung Screening Trial [J].
Aberle, Denise R. ;
DeMello, Sarah ;
Berg, Christine D. ;
Black, William C. ;
Brewer, Brenda ;
Church, Timothy R. ;
Clingan, Kathy L. ;
Duan, Fenghai ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine A. ;
Gierada, David S. ;
Jain, Amanda ;
Jones, Gordon C. ;
Mahon, Irene ;
Marcus, Pamela M. ;
Rathmell, Joshua M. ;
Sicks, JoRean .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 369 (10) :920-931
[2]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[3]   Risk of malignancy in pulmonary nodules: A validation study of four prediction models [J].
Al-Ameri, Ali ;
Malhotra, Puneet ;
Thygesen, Helene ;
Plant, Paul K. ;
Vaidyanathan, Sri ;
Karthik, Shishir ;
Scarsbrook, Andrew ;
Callister, Matthew E. J. .
LUNG CANCER, 2015, 89 (01) :27-30
[4]  
Cassidy A, 2006, INT J ONCOL, V28, P1295
[5]   Lung-RADS Category 4X: Does It Improve Prediction of Malignancy in Subsolid Nodules? [J].
Chung, Kaman ;
Jacobs, Colin ;
Scholten, Ernst T. ;
Goo, Jin Mo ;
Prosch, Helmut ;
Sverzellati, Nicola ;
Ciompi, Francesco ;
Mets, Onno M. ;
Gerke, Paul K. ;
Prokop, Mathias ;
van Ginneken, Bram ;
Schaefer-Prokop, Cornelia M. .
RADIOLOGY, 2017, 284 (01) :264-271
[6]   Resource Utilization and Costs during the Initial Years of Lung Cancer Screening with Computed Tomography in Canada [J].
Cressman, Sonya ;
Lam, Stephen ;
Tammemagi, Martin C. ;
Evans, William K. ;
Leighl, Natasha B. ;
Regier, Dean A. ;
Bolbocean, Corneliu ;
Shepherd, Frances A. ;
Tsao, Ming-Sound ;
Manos, Daria ;
Liu, Geoffrey ;
Atkar-Khattra, Sukhinder ;
Cromwell, Ian ;
Johnston, Michael R. ;
Mayo, John R. ;
McWilliams, Annette ;
Couture, Christian ;
English, John C. ;
Goffin, John ;
Hwang, David M. ;
Puksa, Serge ;
Roberts, Heidi ;
Tremblay, Alain ;
MacEachern, Paul ;
Burrowes, Paul ;
Bhatia, Rick ;
Finley, Richard J. ;
Goss, Glenwood D. ;
Nicholas, Garth ;
Seely, Jean M. ;
Sekhon, Harmanjatinder S. ;
Yee, John ;
Amjadi, Kayvan ;
Cutz, Jean-Claude ;
Ionescu, Diana N. ;
Yasufuku, Kazuhiro ;
Martel, Simon ;
Soghrati, Kamyar ;
Sin, Don D. ;
Tan, Wan C. ;
Urbanski, Stefan ;
Xu, Zhaolin ;
Peacock, Stuart J. .
JOURNAL OF THORACIC ONCOLOGY, 2014, 9 (10) :1449-1458
[7]   Pulmonary Perifissural Nodules on CT Scans: Rapid Growth Is Not a Predictor of Malignancy [J].
de Hoop, Bartjan ;
van Ginneken, Bram ;
Gietema, Hester ;
Prokop, Mathias .
RADIOLOGY, 2012, 265 (02) :611-616
[8]  
DORFMAN D. D., 1992, STAT RADIOL, V27, P723, DOI DOI 10.1097/00004424-
[9]   Monte Carlo validation of a multireader method for receiver operating characteristic discrete rating data: Factorial experimental design [J].
Dorfman, DD ;
Berbaum, KS ;
Lenth, RV ;
Chen, YF ;
Donaghy, BA .
ACADEMIC RADIOLOGY, 1998, 5 (09) :591-602
[10]   A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules [J].
Gould, Michael K. ;
Ananth, Lakshmi ;
Barnett, Paul G. .
CHEST, 2007, 131 (02) :383-388