Evaluation of nine machine learning regression algorithms for calibration of low-cost PM2.5 sensor

被引:69
作者
Kumar, Vikas [1 ]
Sahu, Manoranjan [1 ,2 ,3 ]
机构
[1] Indian Inst Technol, Environm Sci & Engn Dept, Aerosol & Nanoparticle Technol Lab, Mumbai 400076, Maharashtra, India
[2] Indian Inst Technol, Interdisciplinary Program Climate Studies, Mumbai 400076, Maharashtra, India
[3] Indian Inst Technol, Ctr Machine Intelligence & Data Sci, Mumbai 400076, Maharashtra, India
关键词
PM2.5; Low-cost sensor; Machine learning; Calibration; Regression algorithims; Gradient boosting; AIR-POLLUTION; NETWORK; MODEL;
D O I
10.1016/j.jaerosci.2021.105809
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Low-cost sensors (LCS) can construct a high spatial and temporal resolution PM2.5 network but are affected by environmental parameters such as relative humidity and temperature. The data generated by LCS are inaccurate and require calibration against a reference instrument. This study has applied nine machine learning (ML) regression algorithms for Plantower PMS 5003 LCS calibration and compared their performance. The nine ML algorithms applied in this study are: (a) Multiple Linear Regression (MLR); (b) Lasso regression (L1); (c) Ridge regression (L2); (d) Support Vector Regression (SVR); (e) k-Nearest Neighbour (kNN); (f) Multilayer Perceptron (MLP); (g) Regression Tree (RT); (h) Random Forest (RF); (i) Gradient Boosting (GB). The comparison exhibits that kNN, RF and GB have the best performance out of all the algorithms with train scores of 0.99 and test scores of 0.97, 0.96 and 0.95 respectively. This study validates the capability of ML algorithms for the calibration of LCS.
引用
收藏
页数:12
相关论文
共 56 条
[1]   TEOM vs. manual gravimetric methods for determination of PM2.5 aerosol mass concentrations [J].
Ayers, GP ;
Keywood, MD ;
Gras, JL .
ATMOSPHERIC ENVIRONMENT, 1999, 33 (22) :3717-3721
[2]   Regression methods in the calibration of low-cost sensors for ambient particulate matter measurements [J].
Badura, Marek ;
Batog, Piotr ;
Drzeniecka-Osiadacz, Anetta ;
Modzel, Piotr .
SN APPLIED SCIENCES, 2019, 1 (06)
[3]   Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring [J].
Badura, Marek ;
Batog, Piotr ;
Drzeniecka-Osiadacz, Anetta ;
Modzel, Piotr .
JOURNAL OF SENSORS, 2018, 2018
[4]   Long-term Field Evaluation of Low-cost Particulate Matter Sensors in Nanjing [J].
Bai, Lu ;
Huang, Lin ;
Wang, Zhenglu ;
Ying, Qi ;
Zheng, Jun ;
Shi, Xiaowen ;
Hu, Jianlin .
AEROSOL AND AIR QUALITY RESEARCH, 2020, 20 (02) :242-253
[5]  
Bishop C. M., 2006, Pattern recognition and machine learning
[6]   Laboratory Comparison of Low-Cost Particulate Matter Sensors to Measure Transient Events of Pollution [J].
Bulot, Florentin Michel Jacques ;
Russell, Hugo Savill ;
Rezaei, Mohsen ;
Johnson, Matthew Stanley ;
Ossont, Steven James Johnston ;
Morris, Andrew Kevin Richard ;
Basford, Philip James ;
Easton, Natasha Hazel Celeste ;
Foster, Gavin Lee ;
Loxham, Matthew ;
Cox, Simon James .
SENSORS, 2020, 20 (08)
[7]  
Chen CC, 2018, 2018 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2018), P111, DOI 10.1109/APCCAS.2018.8605619
[8]   Spatial calibration and PM2.5 mapping of low-cost air quality sensors [J].
Chu, Hone-Jay ;
Ali, Muhammad Zeeshan ;
He, Yu-Chen .
SCIENTIFIC REPORTS, 2020, 10 (01)
[9]   Comparison of real-time instruments used to monitor airborne particulate matter [J].
Chung, A ;
Chang, DPY ;
Kleeman, MJ ;
Perry, KD ;
Cahill, TA ;
Dutcher, D ;
McDougall, EM ;
Stroud, K .
JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2001, 51 (01) :109-120
[10]  
Clarke B, 2009, SPRINGER SER STAT, P1, DOI 10.1007/978-0-387-98135-2